Repository logo
 
Publication

Unsupervised hyperspectral signal subspace identification

dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José M.
dc.date.accessioned2016-04-27T14:10:15Z
dc.date.available2016-04-27T14:10:15Z
dc.date.issued2009-05
dc.description.abstractHyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing. This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.pt_PT
dc.identifier.citationNASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Unsupervised hyperspectral signal subspace identification. Seventh Conference on Telecommunications. Vol. 1. 441-444, 2009pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.21/6097
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationOil Slick Surveillance Using ASAR and MERIS Data
dc.subjectHyperspectral signal subspace identification by minimum errorpt_PT
dc.subjectHySimept_PT
dc.titleUnsupervised hyperspectral signal subspace identificationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleOil Slick Surveillance Using ASAR and MERIS Data
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/PDCTE/PDCTE%2FCPS%2F49967%2F2003/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/Orçamento de Funcionamento%2FPOSC/POSC%2FEEA-CPS%2F61271%2F2004/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F39475%2F2007/PT
oaire.citation.conferencePlaceSanta Maria da Feira, Portugalpt_PT
oaire.citation.endPage444pt_PT
oaire.citation.startPage441pt_PT
oaire.citation.titleSeventh Conference on Telecommunicationspt_PT
oaire.citation.volume1pt_PT
oaire.fundingStreamPDCTE
oaire.fundingStreamOrçamento de Funcionamento/POSC
oaire.fundingStreamSFRH
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isProjectOfPublication15c20117-8da0-4de1-9b37-eb381aeb5c54
relation.isProjectOfPublication2f85bdd0-9810-446c-a063-c49fdc79e462
relation.isProjectOfPublication189bec72-ffa6-447b-bed6-32490a6afd6b
relation.isProjectOfPublication.latestForDiscovery15c20117-8da0-4de1-9b37-eb381aeb5c54

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Unsupervised Hyperspectral Signal Subspace Identification.pdf
Size:
201.2 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: