Repository logo
 
Publication

SmartGC: online memory management prediction for PaaS Cloud Models

dc.contributor.authorSimão, José
dc.contributor.authorEsteves, Sérgio
dc.contributor.authorVeiga, Luís
dc.date.accessioned2018-02-22T14:46:03Z
dc.date.available2018-02-22T14:46:03Z
dc.date.issued2017-10
dc.description.abstractIn Platform-as-a-Service clouds (public and private) an efficient resource management of several managed runtimes involves limiting the heap size of some VMs so that extra memory can be assigned to higher priority workloads. However, this should not be done in an application-oblivious way because performance degradation must be minimized. Also, each tenant tends to repeat the execution of applications with similar memory-usage patterns, giving opportunity to reuse parameters known to work well for a given workload. This paper presents SmartGC, a system to determine, at runtime, the best values for critical heap management parameters of JVMs. SmartGC comprises two main phases: (1) a training phase where it collects, with different heap resizing policies, representative execution metrics during the lifespan of a workload; and (2) an execution phase where it matches the execution parameters of new workloads against those of already seen workloads, and enforces the best heap resizing policy. Distinctly from other works, this is done without a previous analysis of unknown workloads. Using representative applications, we show that our approach can lead to memory savings, even when compared with a state-of-the-art virtual machine - OpenJDK. Furthermore, we show that we can predict with high accuracy the best heap policy in a relatively short period of time and with a negligible runtime overhead. Although we focus on the heap resizing, this same approach could also be used to adapt other parameters or even the GC algorithm.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSIMÃO, José; ESTEVES, Sérgio; VEIGA, Luís – SmartGC: online memory management prediction for PaaS Cloud Models. In OTM Confederated International Conferences On the Move to Meaningful Internet Systems. Valletta, Malta: Springer, 2017. ISBN 978-3-319-69461-0. Vol. 10573, pp. 370-388pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-319-69462-7_25pt_PT
dc.identifier.isbn978-3-319-69461-0
dc.identifier.isbn978-3-319-69462-7
dc.identifier.urihttp://hdl.handle.net/10400.21/8104
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Verlagpt_PT
dc.relationFCT - PTDC/EEI-SCR/6945/2014pt_PT
dc.relationCOMPETE 2020 Programme - POCI-01-0145-FEDER-016883pt_PT
dc.subjectGarbage collectionpt_PT
dc.subjectMachine learningpt_PT
dc.subjectShared execution environmentpt_PT
dc.subjectJava Virtual Machinept_PT
dc.titleSmartGC: online memory management prediction for PaaS Cloud Modelspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FCEC%2F50021%2F2013/PT
oaire.citation.conferencePlaceValletta, Malta - October 20-26, 2017pt_PT
oaire.citation.endPage388pt_PT
oaire.citation.startPage370pt_PT
oaire.citation.titleOTM Confederated International Conferences On the Move to Meaningful Internet Systemspt_PT
oaire.citation.volume10573pt_PT
oaire.fundingStream5876
person.familyNameSimão
person.givenNameJosé
person.identifier1099536
person.identifier.ciencia-id5413-C0FA-7557
person.identifier.orcid0000-0002-6564-593X
person.identifier.scopus-author-id57189313027
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication625152de-db55-4942-8506-f461f4bd947d
relation.isAuthorOfPublication.latestForDiscovery625152de-db55-4942-8506-f461f4bd947d
relation.isProjectOfPublication9964a800-3334-42d6-aab0-1f8870cbe7b1
relation.isProjectOfPublication.latestForDiscovery9964a800-3334-42d6-aab0-1f8870cbe7b1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SmartGC_JSimao_ADEETC.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: