Logo do repositório
 
Publicação

Enhanced random vector functional link networks with bayesian-based hyperparameter optimization for wind speed forecasting

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSeman, Laio Oriel
dc.contributor.authorKlaar, Anne Carolina Rodrigues
dc.contributor.authorRibeiro, Matheus Henrique Dal Molin
dc.contributor.authorStefenon, Stefano Frizzo
dc.date.accessioned2026-01-05T12:11:20Z
dc.date.available2026-01-05T12:11:20Z
dc.date.issued2025
dc.description.abstractAccurate short-term wind speed forecasting is essential for reliable and efficient wind energy integration. This paper introduces an enhanced Random Vector Functional Link (RVFL) network optimized through a Bayesian-based Neural Architecture Search (NAS) framework. The proposed RVFL-OptBayes model incorporates multi-scale feature generation, including kernel approximations, Nystr & ouml;m sampling, Fastfood transforms, wavelet scattering, and Neural Tangent Kernel embeddings with Principal Component Analysis (PCA)-aligned orthogonal initializations and spectral normalization to improve stability and feature diversity. Experiments were conducted on real-world Brazilian wind farm data to evaluate forecasting performance. Results show that RVFL-OptBayes outperforms conventional RVFL networks, deep learning models, and ensemble methods, achieving an R2 above 0.99. The proposed framework demonstrates that lightweight randomized architectures, when combined with principled hyperparameter search, can rival or surpass complex deep learning models for time-series forecasting. The findings suggest strong potential for practical deployment in renewable energy systems, offering accurate and computationally efficient wind speed predictions to support operational planning, grid stability, and smart energy management.eng
dc.identifier.citationSeman, L. O., Klaar, A. C. R., Ribeiro, M. H. D., & Stefenon, S. F. (2025). Enhanced random vector functional link networks with bayesian-based hyperparameter optimization for wind speed forecasting. IEEE Access, 13, 208105-208122. https://doi.org/10.1109/ACCESS.2025.3640434
dc.identifier.doi10.1109/access.2025.3640434
dc.identifier.urihttp://hdl.handle.net/10400.21/22428
dc.language.isoeng
dc.peerreviewedyes
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.hasversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278055&utm_source=clarivate&getft_integrator=clarivate&tag=1
dc.relation.ispartofIEEE Access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDifferentiable neural architecture
dc.subjectNeural network architectures
dc.subjectPredictive maintenance
dc.subjectVibration
dc.subjectForecasting
dc.subjectAnomaly detection
dc.titleEnhanced random vector functional link networks with bayesian-based hyperparameter optimization for wind speed forecastingeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage208122
oaire.citation.startPage208105
oaire.citation.titleIEEE Access
oaire.citation.volume13
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Enhanced_SFStefenon.pdf
Tamanho:
2.8 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: