Repository logo
 
Publication

Locality-aware GC optimisations for big data workloads

dc.contributor.authorPatrício, Duarte
dc.contributor.authorBruno, Rodrigo
dc.contributor.authorSimão, José
dc.contributor.authorFerreira, Paulo
dc.contributor.authorVeiga, Luís
dc.date.accessioned2018-02-23T11:45:01Z
dc.date.available2018-02-23T11:45:01Z
dc.date.issued2017-10
dc.description.abstractMany Big Data analytics and IoT scenarios rely on fast and non-relational storage (NoSQL) to help processing massive amounts of data. In addition, managed runtimes (e.g. JVM) are now widely used to support the execution of these NoSQL storage solutions, particularly when dealing with Big Data key-value store-driven applications. The benefits of such runtimes can however be limited by automatic memory management, i.e., Garbage Collection (GC), which does not consider object locality, resulting in objects that point to each other being dispersed in memory. In the long run this may break the service-level of applications due to extra page faults and degradation of locality on system-level memory caches. We propose, LAG1 (short for Locality-Aware G1), na extension of modern heap layouts to promote locality between groups of related objects. This is done with no previous application profiling and in a way that is transparent to the programmer, without requiring changes to existing code. The heap layout and algorithmic extensions are implemented on top of the Garbage First (G1) garbage collector (the new by-default collector) of the HotSpot JVM. Using the YCSB benchmarking tool to benchmark HBase, a well-known and widely used Big Data application, we show negligible overhead in frequent operations such as the allocation of new objects, and significant improvements when accessing data, supported by higher hits in system-level memory structures.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPATRÍCIO, Duarte; [et al] – Locality-aware GC optimisations for big data workloads. In OTM Confederated International Conferences On the Move to Meaningful Internet Systems. Valletta, Malta: Springer, 2017. ISBN 978-3-319-69458-0. Vol. 10574, pp. 50-67pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-319-69459-7_4pt_PT
dc.identifier.isbn978-3-319-69458-0
dc.identifier.isbn978-3-319-69459-7
dc.identifier.urihttp://hdl.handle.net/10400.21/8110
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Verlagpt_PT
dc.relationFCT - PTDC/EEI-SCR/6945/2014pt_PT
dc.relationCOMPETE 2020 Programme - POCI-01-0145-FEDER-016883pt_PT
dc.subjectCloud infrastructurept_PT
dc.subjectJava virtual machinept_PT
dc.subjectGarbage collectionpt_PT
dc.subjectLocality-awarept_PT
dc.subjectBig datapt_PT
dc.titleLocality-aware GC optimisations for big data workloadspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FCEC%2F50021%2F2013/PT
oaire.citation.conferencePlaceValletta, Malta - October 22-26, 2017pt_PT
oaire.citation.endPage67pt_PT
oaire.citation.startPage50pt_PT
oaire.citation.titleOTM Confederated International Conferences On the Move to Meaningful Internet Systemspt_PT
oaire.citation.volume10574pt_PT
oaire.fundingStream5876
person.familyNameSimão
person.givenNameJosé
person.identifier1099536
person.identifier.ciencia-id5413-C0FA-7557
person.identifier.orcid0000-0002-6564-593X
person.identifier.scopus-author-id57189313027
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication625152de-db55-4942-8506-f461f4bd947d
relation.isAuthorOfPublication.latestForDiscovery625152de-db55-4942-8506-f461f4bd947d
relation.isProjectOfPublication9964a800-3334-42d6-aab0-1f8870cbe7b1
relation.isProjectOfPublication.latestForDiscovery9964a800-3334-42d6-aab0-1f8870cbe7b1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Locality-Aware_JSimao_ADEETC.pdf
Size:
547.2 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: