Repository logo
 
Publication

Learning dependent sources using mixtures of Dirichlet: applications on hyperspectral unmixing

dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José M.
dc.date.accessioned2011-12-19T12:37:24Z
dc.date.available2011-12-19T12:37:24Z
dc.date.issued2009-10-16
dc.description.abstractThis paper is an elaboration of the DECA algorithm [1] to blindly unmix hyperspectral data. The underlying mixing model is linear, meaning that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. The proposed method, as DECA, is tailored to highly mixed mixtures in which the geometric based approaches fail to identify the simplex of minimum volume enclosing the observed spectral vectors. We resort then to a statitistical framework, where the abundance fractions are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. With respect to DECA, we introduce two improvements: 1) the number of Dirichlet modes are inferred based on the minimum description length (MDL) principle; 2) The generalized expectation maximization (GEM) algorithm we adopt to infer the model parameters is improved by using alternating minimization and augmented Lagrangian methods to compute the mixing matrix. The effectiveness of the proposed algorithm is illustrated with simulated and read data.por
dc.identifier.citationNASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. – Learning dependent sources using mixtures of Dirichlet: applications on hyperspectral unmixing. In 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Grenoble, France: IEEE, 2009. ISBN 978-1-4244-4686-5. Pp. 392-396.por
dc.identifier.doi10.1109/WHISPERS.2009.5288975
dc.identifier.eissn2158-6276
dc.identifier.isbn978-1-4244-4686-5
dc.identifier.issn2158-6268
dc.identifier.urihttp://hdl.handle.net/10400.21/921
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEEpor
dc.subjectBlind hyperspectral unmixingpor
dc.subjectMinimum Description Length (MDL)por
dc.subjectMixtures of Dirichlet densitiespor
dc.subjectAugmented Lagrangian methodspor
dc.subjectDependent sourcespor
dc.titleLearning dependent sources using mixtures of Dirichlet: applications on hyperspectral unmixingpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceNew Yorkpor
oaire.citation.endPage396por
oaire.citation.startPage392por
oaire.citation.title2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensingpor
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: