Repository logo
 
Loading...
Project Logo
Research Project

Center for Natural Resources and Environment

Authors

Publications

Unlocking nature’s potential: modelling Acacia melanoxylon as a renewable resource for bio-oil production through thermochemical liquefaction
Publication . Ozkan, Sila; Sousa, Henrique; Gonçalves, Diogo; Puna, Jaime; Carvalho, Ana; Bordado, João; Santos, Rui Galhano dos; Gomes, João
This study is focused on the modelling of the production of bio-oil by thermochemical liquefaction. Species Acacia melanoxylon was used as the source of biomass, the standard chemical 2-Ethylhexanol (2-EHEX) was used as solvent, p-Toluenesulfonic acid (pTSA) was used as the catalyst, and acetone was used for the washing process. This procedure consisted of a moderate acid-catalysed liquefaction process and was applied at 3 different temperatures to determine the proper model: 100, 135, and 170 ◦C, and at 30-, 115-, and 200-min periods with 0.5%, 5.25%, and 10% (m/m) catalyst concentrations of overall mass. Optimized results showed a bio-oil yield of 83.29% and an HHV of 34.31 MJ/kg. A central composite face-centred (CCF) design was applied to the liquefaction reaction optimization. Reaction time, reaction temperature, as well as catalyst concentration, were chosen as independent variables. The resulting model exhibited very good results, with a highly adjusted R-squared (1.000). The liquefied products and biochar samples were characterized by Fourier transformed infrared (FTIR) and thermogravimetric analysis (TGA); scanning electron microscopy (SEM) was also performed. The results show that invasive species such as acacia may have very good potential to generate biofuels and utilize lignocellulosic biomass in different ways. Additionally, using acacia as feedstock for bio-oil liquefaction will allow the valorisation of woody biomass and prevent forest fires as well. Besides, this process may provide a chance to control the invasive species in the forests, reduce the effect of forest fires, and produce bio-oil as a renewable energy.
Home trash biomass valorization by catalytic pyrolysis
Publication . Rijo, Bruna; Dias, Ana Paula Soares; Jesus, Nicole de; Pereira, Manuel Francisco
With the increase in population, large amounts of food waste are produced worldwide every day. These leftovers can be used as a source of lignocellulosic waste, oils, and polysaccharides for renewable fuels. In a fixed bed reactor, low-temperature catalytic pyrolysis was investigated using biomass gathered from domestic garbage. Thermogravimetry, under N2 flow, was used to assess the pyrolysis behavior of tea and coffee grounds, white potato, sweet potato, banana peels, walnut, almonds, and hazelnut shells. A mixture of biomass was also evaluated by thermogravimetry. Waste inorganic materials (marble, limestone, dolomite, bauxite, and spent Fluid Catalytic Cracking (FCC) catalyst) were used as catalysts (16.7% wt.) in the pyrolysis studies at 400 degrees C in a fixed bed reactor. Yields of bio-oil in the 22-36% wt. range were attained. All of the catalysts promoted gasification and a decrease in the bio-oil carboxylic acids content. The marble dust catalyst increased the bio-oil volatility. The results show that it is possible to valorize lignocellulosic household waste by pyrolysis using inorganic waste materials as catalysts.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/04028/2020

ID