Repository logo
 
Loading...
Project Logo
Research Project

EVOLV - Evolution of Linear Volcanic ridges in Central Azores: interaction between magmatic and tectonic processes.

Authors

Publications

Volcano-tectonic evolution of a linear volcanic ridge (Pico-Faial Ridge, Azores Triple Junction) assessed by paleomagnetic studies
Publication . Silva, Pedro; Henry, Bernard; Marques, Fernando Ornelas; Hildenbrand, Anthony; Lopes, Ana; Madureira, Pedro Miguel; Madeira, JFA; Nunes, João C.; Roxerová, Zuzana
The morphology of volcanic oceanic islands results from the interplay between constructive and destructive processes, and tectonics. In this study, the analysis of the paleomagnetic directions obtained on well-dated volcanic rocks is used as a tool to assess tilting related to tectonics and large-scale volcano instability along the Pico-Faial linear volcanic ridge (Azores Triple Junction, Central-North Atlantic). For this purpose, 530 specimens from 46 lava flows and one dyke from Pico and Faial islands were submitted to thermal and alternating magnetic fields demagnetizations. Detailed rock magnetic analyses, including thermomagnetic analyses and classical high magnetic field experiments revealed titanomagnetites with different Ti-content as the primary magnetic carrier, capable of recording stable remanent magnetizations. In both islands, the paleomagnetic analysis yields a Characteristic Remanent Magnetization, which presents island mean direction with normal and reversed polarities in agreement with the islands location and the age of the studied lava flows, indicating a primary thermo-remanent magnetization. Field observations and paleomagnetic data show that lava flows were emplaced on pre-existing slopes and were later affected by significant tilting. In Faial Island, magmatic inflation and normal faults making up an island-scale graben, can be responsible for the tilting. In Pico Island, inflation related to magma intrusion during flow emplacement can be at the origin of the inferred tilting, whereas gradual downward movement of the SE flank by slumping processes appears mostly translational.
Palaeomagnetic study of a subaerial volcanic ridge (São Jorge Island, Azores) for the cobb mountain subhron, volcano flank instability and tectonomagmatic implications
Publication . Silva, P. F.; Henry, B.; Marques, Fernando O.; Hildenbrand, A.; Madureira, P.; Meriaux, C. A.; Kratinova, Z.
We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876-PPCDTI

Funding Award Number

PTDC/CTE-GIN/71838/2006

ID