Repository logo
 
Loading...
Project Logo
Research Project

Plasmonic Enhancement of Fluorescence Signalling for Pushing the Limit of Micro-RNA Detection

Authors

Publications

Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications
Publication . Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Louro, Paula; Vieira, Manuela; Silva, R. P. O.; Teixeira, D.; Da Costa Ribeiro, Ana Paula; Prazeres, Duarte; Alegria, Elisabete
This paper reports about a study of the local plasmonic resonance (LSPR) produced by metal nanoparticles embedded in a dielectric or semiconductor matrix. It is presented an analysis of the LSPR for different nanoparticle metals, shapes, and embedding media composition. Metals of interest for nanoparticle composition are Aluminum and Gold. Shapes of interest are nanospheres and nanotriangles. We study in this work the optical properties of metal nanoparticles diluted in water or embedded in amorphous silicon, ITO and ZnO as a function of size, aspect-ratio and metal type. Following the analysis based on the exact solution of the Mie theory and DDSCAT numerical simulations, it is presented a comparison with experimental measurements realized with arrays of metal nanospheres. Simulations are also compared with the LSPR produced by gold nanotriangles (Au NTs) that were chemically produced and characterized by microscope and optical measurements.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

OE

Funding Award Number

SFRH/BPD/111906/2015

ID