Loading...
Research Project
Photonic biosensor for point of care and early diagnostics of acute kidney injury
Funder
Authors
Publications
Arrayed graphene enhanced surface plasmon resonance for sensing applications
Publication . Fantoni, Alessandro; Vygranenko, Yuri; Maçarico, António; Serafinelli, Caterina; Fernandes, Miguel; Mansour, Rima; Jesus, Rui; Vieira, Manuela
Combination of carbon-based nanomaterials (CNMs) with AuNPs has been demonstrated to enhance the LSPR response and facilitate the functionalization with specific and selective antibodies. Also, the introduction of CNMs in the plasmonic layer allows tuning of the LSPR central frequency. Joining the double dependence of the LSPR on the MNPs size and the presence of CNMs, it is possible to create a set of plasmonic layers whose LSPR wavelengths are distributed in a spectral range of few tenth of nanometers. This consideration paves the way to an LSPR sensor with an arrayed structure, where each element maximizes its specific LSPR at its own wavelength. Illumination with a broad light source produces a different response in each one of the elements. The working process underlying the sensing operation is that each element of the sensor array acts like a band-stop optical filter for a specific wavelength. The output can be extracted by the application of an image analysis approach to the spatially modulated light crossing the sensor area, based on a color recognition algorithm. A change in the refractive index over the sensor array will shift the rejection band of the sensing elements. An automatized method for color recognition can support the analysis of the refractive index variations yielding the final sensor output. A figure of merit, highlighting the LSPR central wavelength and spectral extension for different LSPR configurations, is also obtained for different sizes of the AuNPs and different flavors of CNMs.
Green synthesis of gold nanoparticles and their deposition on ITO surfaces
Publication . Lapa, Hugo; Silva, Nelson; Fantoni, Alessandro; Maçarico, A. Filipe; Almeida, Gabriela; Alegria, Elisabete
The use of plasmonic nanoparticles for biomedical applications has been widely explored, resulting in significant advances in the construction of optical biosensors. The shape and size of AuNPs determines the spectral signature of their Localized Surface Plasmon Resonance (LSPR) and, therefore, the features of their plasmonic band can be used to monitor surface changes such as those related to protein binding or nanoparticle aggregation. In this work, gold nanoparticles (AuNPs) were produced based on a green and sustainable methodology using tea leaves. The phytochemicals present in tea act as reducing and stabilizing agents. To optimize the AuNPs deposition (nanomaterial proximity, homogenization and substrate coverage), ITO surfaces were modified with different materials, namely sol-gel matrices (e.g. (3-aminopropyl) triethoxysilane (APTES)), cross-linking agents (e.g., glutaraldehyde) and biopolymers (e.g., Bovine Serum Albumin (BSA)). The produced AuNPs were deposited directly onto ITO surfaces functionalized with APTES or in a mixture of BSA and glutaraldehyde; these matrices are transparent and thus suitable for optical applications. The functionalization procedure of ITO surfaces with the referred materials was performed by two methodologies: i) direct deposition of the matrix solution using a micropipette and ii) ultrasound irradiation. The resulting functionalized ITO surfaces were compared and characterized by light transmission spectroscopy. Accordingly, the tea-AuNPs deposited in the presence of BSA and glutaraldehyde provided the best plasmonic response, being the most promising ones for the development of an optical immunosensor.
Performance of an a-Si:H MMI multichannel beam splitter analyzed by computer simulation
Publication . Costa, João; Almeida, Daniel; Fantoni, Alessandro; Lourenço, Paulo; Fernandes, Miguel; Vieira, Manuela
Optical power splitters are widely used in many applications and di_erent typologies have been developed for devices dedicated to this function. Among them, the multimode interference design is especially attractive for its simplicity and performance making it a strong candidate for low-cost applications, such as photonics lab-on-chips for biomedical point of care systems. Within this context, splitting the optical beam equally into multiple channels is of fundamental importance to provide reference arms, parallel sensing of di_erent biomarkers and allowing multiplexed reading schemes. From a theoretical point of view, the multimode structure allows implementation of the power splitting function for an arbitrary number of channels, but in practice its performance is limited by lithographic mask imperfections and waveguide width. In this work we analyze multimode waveguide structures, based on amorphous silicon (a-Si:H) over insulator (SiO2), which can be produced by the PECVD deposition technique. The study compares the performance of several 1 to N designs optimized to provide division of the fundamental quasi-TM mode as a function of input polarization and lithographic roughness. The performance is analyzed in terms of output power uniformity and attenuation and is based on numerical simulations using the Beam Propagation Method and Eigenmode Expansion Propagation Methods.
Design and optimization of a waveguide/fibre coupler in the visible range
Publication . Lourenço, Paulo; Fantoni, Alessandro; Costa, João; Fernandes, Miguel; Vieira, Manuela
When engineering photonic integrated structures, there will be a time that one must consider coupling out the electromagnetic field to an external device. Often, this coupling is made through a single mode optical fibre. Due to the mismatch in mode field diameters between waveguide and fibre modes, the propagating mode inside the dielectric waveguide must undertake a spot-size conversion. It requires to be radially expanded, often laterally by a tapered waveguide and longitudinally through other means, to match the radial profile of the optical fibre mode. Then, the energy must be coupled out of its propagating path into the plane of the optical fibre, through a structure that possesses such functional purpose. In this work, we describe the design steps and optimization of a silicon nitride waveguide/fibre coupler operating in the visible range. To this end, we start by designing an optimized 3D taper waveguide, using Beam Propagation method, that performs as the spot-size converter. Next, through the Eigen Mode Expansion method, a 2D subwavelength grating is designed and optimized regarding substrate leakage and propagating plane energy coupling out, thus vertically validating the energy distribution of the outgoing profile. The required subwavelength grating apodization is accomplished, once more through the Eigen Mode Expansion method, and by carefully engineering a metamaterial that performs accordingly. The obtained diffraction grating is then expanded horizontally to create a 3D structure and laterally validated through Beam Propagation method. Finally, the whole 3D structure is optimized and validated through Finite Differences Time Domain simulations regarding energy profile coupling out, and overlap integral matching is established with the fibre mode profile.
Thin film refractive index and thickness
Publication . Lourenço, Paulo; Vieira, Manuela; Fantoni, Alessandro
Integrated optics are a contemporaneous reality in which thin-film technology and methods utilized in the development of integrated circuitry, are applied to both optical circuits and devices. This provides systems that show improved characteristics when compared to their electronic counterparts. Optical systems enable wider bandwidth operation, less power consumption, more immunity to interference and higher cost-efficiency. These features definitely represent a huge improvement in our daily lives when completely embedded in Information and Communications Technologies, replacing a large percentage of contemporaneous electronic based systems. The building blocks of these optical systems consist on waveguides and structures formed by deposited thin films. Two characteristics of utmost importance for these structures are the height and refractive index of the deposited film. In this work and by using a prism coupler, we will be presenting an optical setup and the experimental method that is used to determine both refractive index and thickness of the wave guiding structure.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
9471 - RIDTI
Funding Award Number
PTDC/NAN-OPT/31311/2017