Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Crosslinked bacterial cellulose hydrogels for biomedical applicationsPublication . Almeida, Ana; Saraiva, João N.; Cavaco, Gonçalo; Portela, Raquel; Leal, Catarina R.; Sobral, Rita; Almeida, Pedro L.The skin, fundamental barrier that protects internal tissues, prevents pathogen invasion, and maintains the body fluid equilibrium, may be compromised upon traumas, such as incisions and burns. The healing process of such wounds is costly and usually hindered by the patient’s physiological conditions, associated diseases, inflammation and external factors, namely bacterial infections. Recently, increasing attention has been given to bacterial cellulose-based membranes to be applied as dressings for healing purposes. Bacterial cellulose is an attractive biomaterial due to its unique structural characteristics such as high porosity, high water retention capacity, high mechanical strength, low density, and biodegradability. One drawback of bacterial cellulose hydrogels is that, after the first dehydration, the water retention capacity is hindered. In this work we produced, modified, and characterized hydrated and de-hydrated BC membranes. Two crosslinking methods were adopted (using citric acid and epichlorohydrin as crosslinking agents), and the results obtained from the characterizations such as water retention capacity, mechanical properties or contact angle were compared to those of unmodified bacterial cellulose. We demonstrate that the cross-linked bacterial cellulose membranes present physical properties suitable to be used as surgical and burn wound dressings when hydrated, or as exuding wound dressings, diapers dressing or sanitary pads when dehydrated.
- Antibiotic activity screened by the rheology of S. aureus culturesPublication . Portela, Raquel; Valcovo, Filipe; Almeida, Pedro L.; Sobral, Rita; Leal, Catarina R.Multidrug resistant bacteria are one of the most serious public health threats nowadays. How bacteria, as a population, react to the presence of antibiotics is of major importance to the outcome of the chosen treatment. In this study we addressed the impact of oxacillin, a β-lactam, the most clinically relevant class of antibiotics, in the viscosity profile of the methicillin resistant Staphylococcus aureus (MRSA) strain COL. In the first approach, the antibiotic was added, at concentrations under the minimum inhibitory concentration (sub-MIC), to the culture of S. aureus and steady-state shear flow curves were obtained for discrete time points during the bacterial growth, with and without the presence of the antibiotic, showing distinct viscosity progress over time. The different behaviors obtained led us to test the impact of the sub-inhibitory concentration and a concentration that inhibited growth. In the second approach, the viscosity growth curves were measured at a constant shear rate of 10 s−1, over time. The obtained rheological behaviors revealed distinctive characteristics associated to the presence of each concentration of the tested antibiotic. These results bring new insights to the bacteria response to a well-known bacteriolytic antibiotic.