Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Implementation of a non-Hertzian contact model for railway dynamic applicationPublication . Magalhães, Hugo; Marques, Filipe; Liu, Binbin; Antunes, Pedro; Pombo, João; Flores, Paulo; Ambrosio, Jorge; Piotrowski, Jerzy; Bruni, StefanoThe development of wheel–rail contact models is an active topic of railway research with the dual objective of improving the accuracy of multibody simulations and reducing its computational effort. This paper extends the online Hertzian contact model, proposed by Pombo et al. (Veh. Syst. Dyn. 45: 165–189, 2007) to propose a non-Hertzian contact model. The new methodology presented here includes the following steps: (i) search of the points of contact; (ii) identification of the undeformed distance function; (iii) evaluation of the contact patch; (iv) calculation of the normal and tangential contact forces; (v) application of the contact forces in the multibody vehicle model. Among several contact models available in the literature, this non-Hertzian contact approach uses the Kik–Piotrowski model for the normal contact force, while the tangential forces are obtained from the interpolation of the available Kalker Book of Tables for non-Hertzian (KBTNH) contact. With the purpose to demonstrate the proper implementation and selection of parameters that define this new model, several contact analysis and dynamic simulations are performed in which the wheel S1002 and the rail UIC50 are considered. First, the contact analyses that determine the contact condition of different wheel–rail interactions serve to assess the accuracy of the Hertzian and non-Hertzian models with respect to the software of reference CONTACT. Second, the Hertzian and non-Hertzian models are utilised to perform dynamic simulations of a wheelset, a bogie and a vehicle running in tangent and curved tracks. In short, this work provides, not only a complete description of the implementation of a non-Hertzian contact model in a multibody code, but also suggests for the proper selection of the parameters that promote better accuracy and optimal computational efficiency.
- A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysisPublication . Marques, Filipe; Magalhães, Hugo; Pombo, João; Ambrosio, Jorge; Flores, PauloThe wheel-rail contact modeling problem assumes a preponderant role on the dynamic analysis of railway systems using multibody systems formulations. The accurate and efficient evaluation of both location and magnitude of the wheel-rail contact forces is fundamental for the development of reliable computational tools. The wheel concave zone might be a source of numerical difficulties when searching the contact points, which has been neglected in several works. Here, it is demonstrated that the minimum distance method does not always converge when the wheel surface is not fully convex, being an alternative methodology proposed to perform the contact detection. This approach examines independently the contact between each wheel strip and the rail, where the maximum virtual penetration is determined and associated with the location of the contact point. Then, an Hertzian-based force model is considered for both normal and tangential forces. The results obtained from dynamic simulations show that the minimum distance method and the proposed methodology provide a similar response for simplified wheel profiles. However, the new approach described here is reliable in the identification of the contact point when realistic wheel profiles are considered, which is not the case with the minimum distance method.
- Utilization of non-conformal wheel surfaces for railway dynamicsPublication . Marques, Filipe; Magalhães, Hugo; Pombo, João; Ambrosio, Jorge; Flores, PauloThe dynamic analysis of railway systems using multibody systems formulation is nowadays a reliable tool for several studies, in which the wheelrail contact interaction has significant importance. The definition of contacting geometries affects directly the dynamic response of the system. For sake of simplicity and computational efficiency, some authors simplify the wheel profile to avoid its concave part. This work intends to study the impact of utilizing a simplified non-conformal profile instead of a real wheel profile. For this purpose, an Hertzian-based contact force model is used to compute either the normal and creep forces. A wheelset rolling over a straight track is used as demonstration case. The results show that although the location of the contact points is similar, the use of simplified wheel profile may have an extensive impact on the dynamic response of the system.