Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry
    Publication . Sousa, Jorge A. M.; Azevedo, Inês; Camus, Cristina Inês; Mendes, Luís; Viveiros, Carla; Barata, Filipe
    Hydrogen produced from renewable energy sources is a valuable energy carrier for linking growing renewable electricity generation with the hard-to-abate sectors, such as cement, steel, glass, chemical, and ceramics industries. In this context, this paper presents a new model of hydrogen production based on solar photovoltaics and wind energy with application to a real-world ceramics factory. For this task, a novel multipurpose profit-maximizing model is implemented using GAMS. The developed model explores hydrogen production with multiple value streams that enable technical and economical informed decisions under specific scenarios. Our results show that it is profitable to sell the hydrogen produced to the gas grid rather than using it for self-consumption for low-gas-price scenarios. On the other hand, when the price of gas is significantly high, it is more profitable to use as much hydrogen as possible for self-consumption to supply the factory and reduce the internal use of natural gas. The role of electricity self-consumption has proven to be key for the project's profitability as, without this revenue stream, the project would not be profitable in any analysed scenario.
  • Optimal investment and sharing decisions in renewable energy communities with multiple investing members
    Publication . Barbosa, Inês; Sousa, Jorge A. M.; Villar, José; Lagarto, João; Viveiros, Carla; Barata, Filipe
    The Renewable Energy Communities (RECs) and self-consumption frameworks defined in Directive (EU) 2023/2413 and Directive (EU) 2024/1711 are currently being integrated into national regulations across EU member states, adapting legislation to incorporate these new entities. These regulations establish key principles for individual and collective self-consumption, outlining operational rules such as proximity constraints, electricity sharing mechanisms, surplus electricity management, grid tariffs, and various organizational aspects, including asset sizing, licensing, metering, data exchange, and role definitions. This study introduces a model tailored to optimize investment and energy-sharing decisions within RECs, enabling multiple members to invest in solar photovoltaic (PV) and wind generation assets. The model determines the optimal generation capacity each REC member should install for each technology and calculates the energy shared between members in each period, considering site-specific constraints on renewable deployment. A case study with a four-member REC is used to showcase the model’s functionality, with simulation results underscoring the benefits of CSC over ISC.