Repository logo
 
Loading...
Profile Picture
Person

Caneiras Bravo, Miguel Nuno

Search Results

Now showing 1 - 2 of 2
  • Thermal performance of concrete with reactive magnesium oxide as an alternative binder
    Publication . Forero Valencia, Javier Andres; Bravo, Miguel; Pacheco, João; Brito, Jorge de; Evangelista, Luis
    This study evaluates the thermal conductivity of concrete produced with reactive magnesium oxide (MgO) as a partial replacement for cement. MgO is a viable option for the concrete industry, mainly due to its benefits in sustainability and reducing CO2 emissions compared to cement emissions. Four different MgO's produced in Australia, Canada, and Spain were used in concrete mixes as a partial replacement of cement at 5%, 10%, and 20% by mass. The experimental results showed that the thermal conductivity is higher when MgO increases in mixes after 28 days of curing. With the incorporation of MgO, the thermal conductivity increased between 3.2% and 10.2%, and the mechanical properties declined: compressive strength between 12.7% to 26.2%, splitting tensile strength between 9.7% to 34.0%, and modulus of elasticity between -4.1% to 7.8%. Finally, it is important to highlight that the addition of different contents of MgO in the concrete mixes modified the microstructure of the cement matrix. As a result, there was an increase in porosity, which negatively influenced the mechanical properties and thermal conductivity. Therefore, the relationships between these properties were also analyzed.
  • Durability and shrinkage of concrete with CDW as recycled aggregates: Benefits from superplasticizer’s incorporation and influence of CDW composition
    Publication . Bravo, Miguel; De Brito, Jorge; Evangelista, Luis; Pacheco, João
    The shrinkage and durability properties of a total of 34 concrete mixes with recycled aggregates produced from different untreated construction and demolition waste (CDW) were tested. The effect of a polycarboxylic superplasticizer on the enhancement of these properties is presented, discussed, and compared with the findings of studies on concrete whose recycled aggregates are sourced from concrete. All properties were significantly affected by recycled aggregate incorporation and this effect was strongly dependent on the properties of the recycled aggregates of each specific source. The superplasticizer was less efficient in mixes with CDW than when the recycled aggregates were produced from concrete, the most common source of recycled aggregates in experimental works, despite untreated CDW being more practical and desirable from an industrial and environmental perspective.