Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Evaluating tsunami impact on the Gulf of Cadiz Coast (Northeast Atlantic)Publication . Omira, Rachid; Baptista, Maria Ana Carvalho Viana; Miranda, Jorge MiguelThe Gulf of Cadiz coasts are exposed to tsunamis. Emergency planning tools are now taking into account this fact, especially because a series of historical occurrences were strikingly significant, having left strong evidence behind, in the mareographic records, the geological evidence or simply the memory of the populations. The study area is a strip along the Algarve coast, south Portugal, an area known to have been heavily impacted by the 1 November 1755 event. In this study we use two different tsunami scenarios generated by the rupture of two thrust faults identified in the area, corresponding to 8.1-8.3 magnitude earthquakes. Tsunami propagation and inundation computation is performed using a non-linear shallow water code with bottom friction. Numerical modeling results are presented in terms of flow depth and current velocity with maximum values of 7 m and 8 m/s for inundation depth and flow speed, respectively. These results constitute a valuable tool for local authorities, emergency and decision planners to define the priority zones where tsunami mitigation measures must be implemented and to develop tsunami-resilient communities.
- Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunamiPublication . Omira, Rachid; Baptista, Maria Ana Carvalho Viana; Leone, F.; Matias, L.; Mellas, S.; Zourarah, B.; Miranda, Jorge Miguel; Carrilho, F.; Cherel, J. PThis paper seeks to investigate the effectiveness of sea-defense structures in preventing/reducing the tsunami overtopping as well as evaluating the resulting tsunami impact at El Jadida, Morocco. Different tsunami wave conditions are generated by considering various earthquake scenarios of magnitudes ranging from M-w = 8.0 to M-w = 8.6. These scenarios represent the main active earthquake faults in the SW Iberia margin and are consistent with two past events that generated tsunamis along the Atlantic coast of Morocco. The behavior of incident tsunami waves when interacting with coastal infrastructures is analyzed on the basis of numerical simulations of near-shore tsunami waves' propagation. Tsunami impact at the affected site is assessed through computing inundation and current velocity using a high-resolution digital terrain model that incorporates bathymetric, topographic and coastal structures data. Results, in terms of near-shore tsunami propagation snapshots, waves' interaction with coastal barriers, and spatial distributions of flow depths and speeds, are presented and discussed in light of what was observed during the 2011 Tohoku-oki tsunami. Predicted results show different levels of impact that different tsunami wave conditions could generate in the region. Existing coastal barriers around the El Jadida harbour succeeded in reflecting relatively small waves generated by some scenarios, but failed in preventing the overtopping caused by waves from others. Considering the scenario highly impacting the El Jadida coast, significant inundations are computed at the sandy beach and unprotected areas. The modeled dramatic tsunami impact in the region shows the need for additional tsunami standards not only for sea-defense structures but also for the coastal dwellings and houses to provide potential in-place evacuation.
- Potential inundation of Lisbon downtown by a 1755-like tsunamiPublication . Baptista, Maria Ana Carvalho Viana; Miranda, Jorge Miguel; Omira, Rachid; Antunes, C.In this study, we present 10 m resolution tsunami flooding maps for Lisbon downtown and the Tagus estuary. To compute these maps we use the present bathymetry and topographic maps and a reasonable estimate for the maximum credible tsunami scenario. Tsunami modeling was made with a non-linear shallow water model using four levels of nested grids. The tsunami flood is discussed in terms of flow depth, run-up height and maximum inundation area. The results show that, even today, in spite of the significant morphologic changes in the city river front after the 1755 earthquake, a similar event would cause tsunami flow depths larger than one meter in a large area along the Tagus estuary and Lisbon downtown. Other areas along the estuary with a high population density would also be strongly affected. The impact of the tide on the extent of tsunami inundation is discussed, due to the large amplitude range of the tide in Lisbon, and compared with the historical descriptions of the 1755 event. The results presented here can be used to identify the potential tsunami inundation areas in Lisbon; this identification comprises a key element of the Portuguese tsunami emergency management system.