Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • A buck-boost converter with extended duty-cycle range in the buck voltage region for renewable energy sources
    Publication . Monteiro, Joaquim; Fernao Pires, Vitor; Foito, Daniel; Cordeiro, Armando; J. F. Silva, Fernando Silva, Fernando A Silva, J. Fernando Silva, J F A Silva, Fernando Silva José; Pinto, Sonia
    Buck-boost DC-DC converters are useful as DC grid interfaces for renewable energy resources. In the classical buck-boost converter, output voltages smaller than the input voltage (the buck region) are observed for duty cycles between 0 and 0.5. Several recent buck-boost converters have been designed to present higher voltage gains. Nevertheless, those topologies show a reduced duty-cycle range, leading to output voltages in the buck region, and thus require the use of very low duty cycles to achieve the lower range of buck output voltages. In this work, we propose a new buck-boost DC-DC converter that privileges the buck region through the extension of the duty-cycle range, enabling buck operation. In fact, the converter proposed here allows output voltages below the input voltage even with duty cycles higher than 0.6. We present the analysis, design, and testing of the extended buck-boost DC-DC converter. Several tests were conducted to illustrate the characteristics of the extended buck-boost DC-DC converter. Test results were obtained using both simulation software and a laboratory prototype.
  • Diagnosing Power Transistor Faults in Multilevel T-Type Based Nine Switch Inverter Using Center of Mass Indexes
    Publication . Monteiro, Joaquim; Amaral, Tito; Silva, J. Fernando; Pinto, Sonia; Fernao Pires, Vitor
    Nine-switch voltage source inverters (NSVSI) are DC-AC converters that utilize a reduced number of switches, making them advantageous for dual or six-phase motors. To enhance the quality of the output voltage and provide fault tolerant capability, NSVSI topologies, like the T-Type-based NSVSI, have been modified to operate as multilevel converters. However, to ensure fault-tolerant capability, a fault diagnosis algorithm for power transistors must be developed. Therefore, this paper proposes a novel fault detection and diagnosis algorithm to identify faulty transistors in a multilevel T-Type-based NSVSI. This method is based on the development of specific indices derived from the center of mass of the output currents. The proposed technique offers a fast and reliable solution, demonstrating robustness under various load conditions. The effectiveness of this method will be validated through a series of simulation tests.