Repository logo
 
Loading...
Profile Picture
Person

Martins, Jessica Nunes

Search Results

Now showing 1 - 2 of 2
  • Debt market trends and predictors of specialization: an analysis of pakistani corporate sector
    Publication . Khan, Kanwal Iqbal; Qadeer, Faisal; Mata, Mário Nuno; Dantas, Rui; Xavier Rita, João; Martins, Jessica Nunes
    Recently, debt structure research has started focusing on the strategic perspective of financing choices, particularly to understand the reasons for debt specialization (DS). This paper examines trends of specialization over time and industry by using a comprehensive dataset on types of debt employed by the public limited companies during 2009–2018. The objective of the current study is to analyze the effect of debt market conditions by identifying significant predictors of DS. Time-series and cross-sectional results confirm the existence of DS, which is further validated by the findings of the cluster analysis. The empirical results indicate that overall, 61% of the companies solely rely on a single type of debt, mostly on short-term obligations accompanied by long-term secured and other debts. Moreover, small, mature, rated, group-affiliated, and low-leverage companies incline more towards this strategy. Credit rating, debt maturity, financial and interest coverage ratios serve as the primary determinants of the debt market that are significantly associated with the measures of DS. The results contribute to the capital structure literature by specifying that financing choice has an important implication in deciding the debt structure composition of the organizations.
  • Core Predictors of Debt Specialization: A New Insight to Optimal Capital Structure
    Publication . Khan, Kanwal Iqbal; Qadeer, Faisal; Mata, Mário Nuno; Neto, José Chavaglia; Sabir, Qurat Ul An; Martins, Jessica Nunes; Filipe, J.A.
    Debt structure composition is an essential topic of discussion for the management of capital structure decisions. Researchers made extensive efforts to understand the criteria for selecting debts, specifically, to know about the reasons for debt specialization, concealed in identifying its predictors. This question is essential not only for establishing the field of debt structure but also for the financial managers to design corporate financial strategy in a way that leads to attaining an optimal debt structure. Sophisticated financial modeling is applied to identify the core predictors of debt specialization, influencing the strategic choices of optimal debt structure to address this issue. Data were collected from 419 non-financial companies listed at the Karachi Stock Exchange from 2009 to 2015. This study has validated debt specialization by showing that short-term debts maintain their position over the years and remain the most popular type of loan among Pakistani firms. Further, it provides a comprehensive view of the cross-sectional differences among the firms involved in debt specialization by applying a holistic approach. Results show that small, growing, dividend-paying companies, having high expense and risk ratios, followed the debt specialization strategy. This strategy enables firms to reduce their agency conflicts, transaction costs, information asymmetry, risk management and building up their good market reputation. Conclusively, we have identified the gross profit margin, long-term debt to asset ratio, firm size, age, asset tangibility, and long-term industry debt to asset ratio as reliable and core predictors of debt specialization for sustainable business growth.