Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Parâmetros espectrais de vozes saudáveis e patológicas: Comparação de resultados entre duas base de dadosPublication . Cordeiro, Hugo; Meneses, CarlosEste artigo apresenta um estudo comparativo entre três parâmetros espectrais na discriminação entre vozes saudáveis e patológicas. Os parâmetros avaliados envolvem a análise do primeiro pico espectral, uma medida da relação sinal-ruído e o declive entre duas bandas de baixa frequência do sinal de fala. O declive entre as bandas de baixa frequência é proposto como otimização do primeiro pico espectral, de modo a colmatar os casos de erro de classificação devido à degradação da qualidade vocal com o avanço da doença. Os três parâmetros são avaliados em duas bases de dados. O declive entre as bandas de baixa frequência obtém os melhores resultados, com 100% de acurácia na base de dados da USP e 83,5% de acurácia na base de dados da MEEI. This paper presents a comparative study between three spectral parameters in the discrimination between healthy and pathological voices. The evaluated parameters involve the analysis of the first spectral peak, the Relative Power of the Periodic Component, which corresponds to a measure of the signal-to-noise ratio and the Low Band Spectral Tilt. The Low Band Spectral Tilt is proposed as optimization of the first spectral peak, to resolve the cases of classification error due to the degradation of vocal quality with the disease progression. The three parameters are evaluated in two databases. The Low Band Spectral Tilt achieves the best results, with 100% accuracy in the USP database and 83.5% accuracy in the MEEI database.
- Spectral features of healthy and pathological voices: results comparison between two databasesPublication . Cordeiro, Hugo; Meneses, CarlosThis paper presents a comparative study between three spectral parameters in the discrimination between healthy and pathological voices. The evaluated parameters involve the analysis of the first spectral peak, the Relative Power of the Periodic Component, which corresponds to a measure of the signal-to-noise ratio and the Low Band Spectral Tilt. The Low Band Spectral Tilt is proposed as optimization of the first spectral peak, to resolve the cases of classification error due to the degradation of vocal quality with the disease progression. The three parameters are evaluated in two databases. The Low Band Spectral Tilt achieves the best results, with 100% accuracy in the USP database and 83.5% accuracy in the MEEI database.