Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Investigation of cooperative effects between Pt/zeolite hydroisomerization catalysts through kinetic simulations
    Publication . Mendes, Pedro; Silva, João; Ribeiro, M Filipa; Daudin, Antoine; Bouchy, Christophe
    A kinetic dual-function model was employed to simulate the performance of binary mixtures of Pt/zeolite catalysts (so-called hybrid catalysts) in the hydroconversion of n-paraffins. The catalytic activity and the maximal yield in feed isomers were simulated for mixtures of catalysts with distinct characteristics to investigate the conditions in which cooperative effects based on metal-acid balance may arise. Superior performances of the hybrids compared to both individual catalysts could be achieved in most of the simulated systems, particularly when mixing Pt-catalysts containing zeolites with dissimilar characteristics. A careful choice of the proportion and metal-acid balance of individual catalysts is, nevertheless, necessary. Moreover, the cooperation in the hybrid catalysts was rationalized based on the performance of the individual catalysts being mixed. The more alike the individual catalysts, to a certain extent, the broader the range of metal to acid sites ratio over which hybrids perform better than both individuals. On the other hand, the relative gain in performance arising from the cooperative effect would decrease. This study unveils hence the influence of each one of the preparation parameters of hybrid catalysts on its behaviour shedding light into the complexity of such catalytic systems.
  • Synergies, cooperation and other effects: a review for hydroconversion catalysts
    Publication . Mendes, Pedro S. F.; Silva, João M; Ribeiro, M Filipa; Daudin, Antoine; Bouchy, Christophe
    Mixing different components is the basis of chemistry. In heterogeneous catalysis, combinations of different active phases are frequently used, but involved in a mysterious way similar to alchemy. The language employed to describe such systems is typically imprecise due to the lack of clear definitions and efforts to quantify the observed performances. In this review, focused in the particular case of bifunctional catalysis, a set of definitions is provided aiming at an analytical and coherent examination of the literature. The works on hybrid zeolite based catalysts for hydroconversion processes are reviewed, and an attempt to classify the various origin of potential cooperation effects is provided. By such means, we hope to provide not only a clear view on the current state-of-the-art on hydroconversion catalysts but also a common framework for a more rigorous investigation of possible synergies of hybrid catalysts over all catalysed reactions.