Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Investigation of cooperative effects between Pt/zeolite hydroisomerization catalysts through kinetic simulations
    Publication . Mendes, Pedro; Silva, João; Ribeiro, M Filipa; Daudin, Antoine; Bouchy, Christophe
    A kinetic dual-function model was employed to simulate the performance of binary mixtures of Pt/zeolite catalysts (so-called hybrid catalysts) in the hydroconversion of n-paraffins. The catalytic activity and the maximal yield in feed isomers were simulated for mixtures of catalysts with distinct characteristics to investigate the conditions in which cooperative effects based on metal-acid balance may arise. Superior performances of the hybrids compared to both individual catalysts could be achieved in most of the simulated systems, particularly when mixing Pt-catalysts containing zeolites with dissimilar characteristics. A careful choice of the proportion and metal-acid balance of individual catalysts is, nevertheless, necessary. Moreover, the cooperation in the hybrid catalysts was rationalized based on the performance of the individual catalysts being mixed. The more alike the individual catalysts, to a certain extent, the broader the range of metal to acid sites ratio over which hybrids perform better than both individuals. On the other hand, the relative gain in performance arising from the cooperative effect would decrease. This study unveils hence the influence of each one of the preparation parameters of hybrid catalysts on its behaviour shedding light into the complexity of such catalytic systems.
  • From powder to extrudate zeolite-based bifunctional hydroisomerization catalysts: on preserving zeolite integrity and optimizing Pt location
    Publication . Mendes, Pedro; Silva, João; Ribeiro, M Filipa; Daudin, Antoine; Bouchy, Christophe
    The development of zeolite-based hydroisomerization catalysts in the powder form is widely spread in scientific literature but shaped bodies are the ones being employed in industry. This work aims at bridging that gap. The shaping procedure for HUSY zeolite in presence of an alumina binder disclosed herein achieved a full conservation of zeolite properties, e.g. porosity and Brønsted acidity. When Pt was located inside the zeolite and an homogeneous Pt distribution along the extrudate was ensured, shaped Pt-containing catalysts had similar hydroisomerization performances to those of powder Pt/zeolite in terms of turnover frequency per Brønsted acid site and maximal feed isomers yield. Conversely, non-uniform distribution of Pt along the extrudates diameter (millimetric scale) was observed to reduce the feed isomers yield. This was tentatively explained by the lower local metal to acid sites ratio in the core of the extrudates. Optimal performance of shaped bifunctional catalysts requires, hence, an adequate metal to acid sites ratio throughout the whole catalyst (i.e. at millimetric and nanometric scale), even if full intimacy between catalytic functions is ensured at the nanoscale by the selective deposition of Pt inside the zeolite.