Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Desulfurization process conciliating heterogeneous oxidation and liquid extraction: Organic solvent or centrifugation/water?
    Publication . Ribeiro, Susana O.; Nogueira, Lucie S.; Gago, Sandra; Almeida, Pedro L.; Corvo, Marta C.; De Castro, Baltazar; Granadeiro, Carlos; Balula, Salete
    The present work presents a strategic oxidative desulfurization system able to efficiently operate under sustainable conditions, i.e. using an eco-friendly oxidant and without the need of extractive organic solvents. The catalytic performance of Eu(PW11O39)2@aptesSBA-15 was evaluated for the oxidative desulfurization of a multicomponent model diesel using a solvent-free or biphasic systems. The results reveal its remarkable desulfurization performance achieving complete desulfurization after just 2 h of reaction. Moreover, the composite has shown a high recycling ability without loss of catalytic activity for ten consecutive ODS cycles. Interestingly, under solvent-free conditions it was possible to maintain the desulfurization efficiency of the biphasic system while being able to avoid the use of harmful organic solvents. In this case, a successful extraction of oxidized sulfur compounds was found conciliating centrifugation and water as extraction solvent. Therefore, this work reports an important step towards the development of novel eco-sustainable desulfurization systems with high industrial interest.
  • Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems
    Publication . Ribeiro, Susana; Granadeiro, Carlos; Almeida, Pedro L.; Pires, João; Capel-Sanchez, Maria C.; Campos-Martin, J. M.; Gago, S.; De Castro, Baltazar; Balula, Salete
    Strategic polyoxometalate Keggin-type structural modification was performed to increase the oxidative catalytic performance to desulfurize model and real diesels. The most active lacunar structure [PW11O39](7-) (PW11) showed to complete desulfurize a simulated diesel after 60 min at 70 degrees C. Its application as homogeneous catalyst using a biphasic system 1: 1 diesel/acetonitrile needed to use an excess of oxidant (ratio H2O2/S = 8). The immobilization of the PW11 on amine-functionalized SBA-15 supports originated two heterogeneous catalysts PW11@aptesSBA-15 and PW11@tbaSBA-15. The best results were attained with the PW11@aptesSBA-15 catalyst showing identical oxidative desulfurization performance as the homogeneous analogue. As advantage, this heterogeneous catalyst promotes the complete desulfurization of simulated diesel using a solvent-free system, i.e. without the need of acetonitrile use. On the other hand, the same desulfurization efficiency could be achieved using half the amount of oxidant (H2O2/S = 4). The oxidative desulfurization of the real diesel achieved a remarkable 83.4% of efficiency after just 2 h. The recycling capacity of PW11@aptesSBA-15 catalyst was confirmed for eight consecutive cycles using the biphasic and the solvent-free systems. Its stability investigation demonstrates to be higher under the solvent-free system than the biphasic system, without practically any occurrence of PW11 leaching in the first case. On the other hand, the Venturello peroxocomplex [PO4{W(O-2)(2)}(4)](3-), recognized as active intermediate in the homogeneous biphasic system, was not identified in the heterogeneous catalytic systems.
  • Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels
    Publication . Mirante, Fátima; Alves, Ana C.; Julião, Diana; Almeida, Pedro L.; Gago, S.; Valença, Rita; Ribeiro, Jorge; De Castro, Baltazar; Granadeiro, Carlos; Balula, Salete
    A novel composite has been prepared through the immobilization of the Keggin sandwich-type [Sm (PMo11O39)(2)](11-) anion (SmPOM) on large-pore silica spheres previously functionalized with trimethylammonium groups (TMA). The resulting SmPOM@TMA-LPMS material has been evaluated as heterogeneous catalyst in a biphasic desulfurization 1:1 diesel/extraction solvent system using H2O2 as oxidant. Preliminary experiments were conducted with different extraction solvents, acetonitrile and [BMIM]PF6 ionic liquid. The optimized extractive and catalytic oxidative desulfurization system (ECODS) with [BMIM]PF6 was able to reach complete sulfur removal from a model diesel containing 2100 ppm S in just 60 min (10 min of initial extraction + 50 min of catalytic step). The reutilization of catalyst and extraction phase has been successfully performed without loss of desulfurization efficiency in consecutive cycles, turning the process more sustainable and cog-effective. The remarkable results with simulated diesel have motivated the application of the catalyst in the desulfurization of untreated real diesel and 74% of efficiency was achieved after only 2 h for three consecutive cycles.