Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Thermal performance of concrete with reactive magnesium oxide as an alternative binder
    Publication . Forero Valencia, Javier Andres; Bravo, Miguel; Pacheco, João; Brito, Jorge de; Evangelista, Luis
    This study evaluates the thermal conductivity of concrete produced with reactive magnesium oxide (MgO) as a partial replacement for cement. MgO is a viable option for the concrete industry, mainly due to its benefits in sustainability and reducing CO2 emissions compared to cement emissions. Four different MgO's produced in Australia, Canada, and Spain were used in concrete mixes as a partial replacement of cement at 5%, 10%, and 20% by mass. The experimental results showed that the thermal conductivity is higher when MgO increases in mixes after 28 days of curing. With the incorporation of MgO, the thermal conductivity increased between 3.2% and 10.2%, and the mechanical properties declined: compressive strength between 12.7% to 26.2%, splitting tensile strength between 9.7% to 34.0%, and modulus of elasticity between -4.1% to 7.8%. Finally, it is important to highlight that the addition of different contents of MgO in the concrete mixes modified the microstructure of the cement matrix. As a result, there was an increase in porosity, which negatively influenced the mechanical properties and thermal conductivity. Therefore, the relationships between these properties were also analyzed.
  • Fracture behaviour of concrete with reactive magnesium oxide as alternative binder
    Publication . Forero, J. A.; Bravo, M.; Pacheco, João; De Brito, Jorge; Evangelista, Luis
    This research evaluates the fracture behavior of concrete with reactive magnesium oxide (MgO). Replacing cement with MgO is an attractive option for the concrete industry, mainly due to sustainability benefits and reduction of shrinkage. Four different MgO's from Australia, Canada, and Spain were used in the concrete mixes, as a partial substitute of cement, at 5%, 10%, and 20% (by weight). The fracture toughness (K-I) intensity factor and the stress-strain softening parameters of the wedge split test were evaluated after 28 days. The experimental results showed that the replacement of cement with MgO reduced the fracture energy between 13% and 53%. Moreover, the fracture energy was found to be correlated with both compressive strength and modulus of elasticity. A well-defined relationship between these properties is important for an adequate prediction of the non-linear behavior of reinforced concrete structures made with partial replacement of cement with MgO.