Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A new tsunami runup predictorPublication . Wronna, Martin; Baptista, Maria Ana; Kanoglu, UtkuWe introduce a new parameter, tsunami runup predictor (TRP), relating the accelerating phase of the wave to the length of the beach slope over which the wave is travelling. We show the existence of a relationship between the TRP and the runup for different initial waveforms, i.e. leading elevation N-waves (LENs) and leading depression N-waves (LDNs). Then, we use the TRP to estimate tsunami runup for past tsunami events. The comparison of the runup estimates against field data gives promising results. Thus, the TRP provides first-order estimates of tsunami runup once the offshore waveform is known or estimated and, therefore, it could be beneficial to be implemented in tsunami early warning systems.
- Reevaluation of the 11 november 1858 earthquake and tsunami in Setubal: a contribution to the seismic and tsunami hazard assessment in Southwest IberiaPublication . Wronna, Martin; Baptista, Maria Ana Carvalho Viana; MIRANDA, JORGE MIGUELThe southwest Iberian Margin (SWIM) hosted a series of tsunamigenic earthquakes. However, strong magnitude earthquakes M > 7.0 are scarce and geological and geophysical evidence suggest that slow deformation occurs on a large area without a discrete plate boundary. The reanalysis of this event is crucial because of its location in a possible transition zone between the diffuse plate boundary and the stable continent regime. The 11 November 1858 earthquake in Setubal, Portugal, with an estimated M similar to 7, ruined a large part of the city and was felt all over Portugal and large parts of the Iberian Peninsula. Earlier studies suggest an epicentre close to the shore, less than 50 km away, and there exists a description of a tsunami in Setubal. We use macroseismic intensities and present a reevaluation of the event parameters: depth, epicentre, magnitude, and fault orientation. We select the candidate faults according to the epicentral area and plate kinematics and use scaling laws for the magnitude range. We use tsunami numerical modelling to check the tsunamigenic potential of the event. Finally, we compute the tsunami propagation and inundation for Setubal for seven candidate scenarios and analyze waveform data obtained at virtual tide gauges. Our results favour an offshore inverse fault compatible with the tsunami observation corresponding to a reverse fault with a 40 degrees strike angle at 13 km depth and a magnitude range of 6.8 +/- 0.3.