Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Double-sided injection lap riveting
    Publication . Pragana, João; Sampaio, Rui F. V.; Chantreuil, Justin; Bragança, Ivo; Silva, Carlos; Martins, Paulo
    This article presents a double-sided injection lap riveting process for fixing two overlapped sheets with tubular rivets at room temperature. The rivets are injected by compression into the dovetail ring holes that are previously machined in both sheets, and, in contrast to other joining by plastic deformation processes making use of auxiliary elements, the resulting joints are hidden inside the sheets without material protrusions above or below their surfaces. The new process is applied in the fabrication of aluminum busbar joints for energy distribution systems, and comparisons are made against conventional bolted joints that were fabricated for reference purposes. The work combines experimentation and finite element modelling, and results allow concluding that, in addition to invisibility and savings in assembly space, there are important gains in the thermo-electrical performance of the new joints that are of paramount importance for electric distribution applications.
  • Form-fit joining of hybrid busbars using a flexible tool demonstrator
    Publication . Reichel, A.; Sampaio, Rui F. V.; Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, Paulo
    This paper is focused on hybrid busbars made from copper and aluminum strips and presents a flexible tool demonstrator capable of replicating material flow in the lancing, bending and compression stages of a new joining by forming process without auxiliary elements. The flexible tool demonstrator is defined by its modular concept that allows the active tool components to be easily interchanged for testing and exploring different materials and thickness combinations, surface conditions and cross-section areas of the strips under laboratory conditions. Experimental and numerical simulation with a selected hybrid busbar geometry validates the overall concept and fabrication of the demonstrator and shows that the new joining by forming process can produce permanent form-fit joints with smooth upper and lower surfaces containing all the plastically deformed material within the thickness of the two strips. Complete filling of the free volume left in-between the thickness of the two strips allows obtaining an electric resistance lower than that of fastened hybrid busbars.