Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Volcano-tectonic evolution of a linear volcanic ridge (Pico-Faial Ridge, Azores Triple Junction) assessed by paleomagnetic studies
    Publication . Silva, Pedro; Henry, Bernard; Marques, Fernando Ornelas; Hildenbrand, Anthony; Lopes, Ana; Madureira, Pedro Miguel; Madeira, JFA; Nunes, João C.; Roxerová, Zuzana
    The morphology of volcanic oceanic islands results from the interplay between constructive and destructive processes, and tectonics. In this study, the analysis of the paleomagnetic directions obtained on well-dated volcanic rocks is used as a tool to assess tilting related to tectonics and large-scale volcano instability along the Pico-Faial linear volcanic ridge (Azores Triple Junction, Central-North Atlantic). For this purpose, 530 specimens from 46 lava flows and one dyke from Pico and Faial islands were submitted to thermal and alternating magnetic fields demagnetizations. Detailed rock magnetic analyses, including thermomagnetic analyses and classical high magnetic field experiments revealed titanomagnetites with different Ti-content as the primary magnetic carrier, capable of recording stable remanent magnetizations. In both islands, the paleomagnetic analysis yields a Characteristic Remanent Magnetization, which presents island mean direction with normal and reversed polarities in agreement with the islands location and the age of the studied lava flows, indicating a primary thermo-remanent magnetization. Field observations and paleomagnetic data show that lava flows were emplaced on pre-existing slopes and were later affected by significant tilting. In Faial Island, magmatic inflation and normal faults making up an island-scale graben, can be responsible for the tilting. In Pico Island, inflation related to magma intrusion during flow emplacement can be at the origin of the inferred tilting, whereas gradual downward movement of the SE flank by slumping processes appears mostly translational.
  • Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data
    Publication . Madureira, Pedro; Mata, João; Mattielli, Nadine; Queiroz, Gabriela; Silva, Pedro
    This work addresses the present-day (<100 ka) mantle heterogeneity in the Azores region through the study of two active volcanic systems from Terceira Island. Our study shows that mantle heterogeneities are detectable even when "coeval" volcanic systems (Santa Barbara and Fissural) erupted less than 10 km away. These volcanic systems, respectively, reflect the influence of the Terceira and D. Joao de Castro Bank end-members defined by Beier et at (2008) for the Terceira Rift Santa Barbara magmas are interpreted to be the result of mixing between a HIMU-type component, carried to the upper mantle by the Azores plume, and the regional depleted MORB magmas/source. Fissural lavas are characterized by higher Ba/Nb and Nb/U ratios and less radiogenic Pb-206/Pb-204, Nd-143/Nd-144 and Hf-176/Hf-177, requiring the small contribution of delaminated sub-continental lithospheric mantle residing in the upper mantle. Published noble gas data on lavas from both volcanic systems also indicate the presence of a relatively undegassed component, which is interpreted as inherited from a lower mantle reservoir sampled by the ascending Azores plume. As inferred from trace and major elements, melting began in the garnet stability field, while magma extraction occurred within the spinel zone. The intra-volcanic system's chemical heterogeneity is mainly explained by variable proportions of the above-mentioned local end-members and by crystal fractionation processes.