Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite platesPublication . Vinyas, Mahesh; Sunny, K. K.; Harursampath, D.; Trung, Nguyen-Thoi; Loja, AméliaThe present article researches the influence of piezoelectric interphase thickness on the coupled frequency response of three-phase smart magneto-electro-elastic (TPS-MEE) plates with the aid of Reddy’s third-order shear deformation theory (RTSDT). A three-phase smart composite constituted of CoFe2O4 piezomagnetic matrix embedded with carbon fibers in the piezoelectric shell is considered for evaluation. The coupling characteristics of the smart carbon/PZT-5A (PZT-7A)/CoFe2O4 composites significantly changes with the interphase thickness of piezoelectric interphase. Thereby the stiffness and the natural frequency of the structure composed of these three-phase MEE materials drastically changes. A finite element (FE) formulation has been derived incorporating Hamilton’s principle. The equations of motion are obtained through condensation technique. The results reveal a significant effect of interphase thickness on the natural frequency of the three-phase smart magneto-electroelastic plate. Further, a special attention has been paid on evaluating the influence of carbon fiber/piezoelectric volume fraction on the free vibration behaviour of TPS-MEE plate. Also, a parametric study has been performed to investigate the effect of boundary conditions, aspect ratio and length-to-width ratio.
- Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theoryPublication . Vinyas, M.; Nischith, G.; Loja, Amélia; Ebrahimi, Farzad; Duc, N. D.This work addresses the problem of the three-dimensional free vibration behavior of skew magneto-electro-elastic plates under the framework of a higher order shear deformation theory. To this end, the finite element method was adopted considering the Hamilton's principle. The results obtained from the present finite element model are verified with the simulation results of COMSOL software. Further, a parametric study is carried out to evaluate the influence of boundary conditions, stacking sequence, aspect ratio, and the length-to-width ratio. A special emphasis has been given to the natural frequency characteristics of multiphase skew magneto-electroelastic plates as well. The results from the present analyses allow concluding on the significant influence that the geometrical skewness has on the free vibration behavior of these plates.