Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Synthesis gas production from water electrolysis, using the Electrocracking concept
    Publication . Guerra, Luís; Moura, K.; Rodrigues, J.; Gomes, João; Puna, Jaime; Bordado, João; Santos, Maria Teresa
    The present research work is focused on the production of synthesis gas by water electrolysis, using renewable electric energy and, further on, liquefied biomass as a carbon source necessary for obtaining carbon monoxide and carbon dioxide. In order to demonstrate and also optimize this process, this study comprised the influence of the electrolyte concentration, liquefied cork concentration, temperature and pressure and the main process outputs, such as: the flow rate of the produced gas, carbon monoxide, carbon dioxide and oxygen composition, as well as the energy consumed in the process. This gas can further on, be used for producing renewable synthetic fuels, such as: methane, methanol, dimethyl ether (DME), diesel, etc. The optimum operational conditions thus determined for this process, at laboratory scale, comprised the use of NaOH 1.2 M mixed with 20% (v/v) liquefied cork, as electrolyte. Applying these operating conditions a synthesis gas composed of 66.67% H2, 25.32% CO, 0.00% CO2 and 8.01% O2 was obtained at a flow rate of 8.31 L/h, consuming a power of 7.75 Wh/L. Also, the analysis of the residual biomass deposited in the electrodes showed some changes in the initial structure, as expected.
  • Methane production by a combined Sabatier reaction/water electrolysis process
    Publication . Guerra, Luís; Rossi, S.; Rodrigues, J.; Gomes, João; Puna, Jaime; Santos, Maria Teresa
    This paper describes production of synthesis gas (syngas) and its optimization through a one-step innovative 1 kW prototype of alkaline water electrolysis (patented), using graphite electrodes and without gas separation (containing CO, CO2, H2 and small amounts of O2). The behavior of the syngas composition and flow rate has been studied and optimized, changing operational parameters such as temperature, pressure and current intensity, and testing two different kinds of electrodes. Afterwards, the best syngas composition has been sent into a catalytic reactor (filled with a bed of Ni/CaO-Al2O3 catalyst) in order to achieve methane production, at 1 bar and different temperatures. The main competitive advantage of this process lies in the built-in of an innovative technology product, from renewable energy (RE) power in remote locations, such as islands, villages in mountains as an alternative for energy storage for mobility constraints. In the catalytic reactor it was possible to achieve a CH4 yield of 25.5 %, a CO2 conversion into CH4 of 44.2% and a CH4 selectivity of 96.5%.