Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • BioMol4Health_Biological chemistry: longevity in a cup of tea
    Publication . RESSAISSI, Asma; Fale, Pedro; Pacheco, Rita; Serralheiro, Maria Luisa
    Infusions have been studied on what concerns Alzheimer Disease, digestive process, diet cholesterol absorption and its biosynthesis inhibition. In the first two cases the inhibition of acetylcholinesterase (AChE) has been addressed. In the last two situations, an in vitro intestinal barrier has been simulated and the inhibition of the regulator enzyme (HMGR) in cholesterol biosysnthesis pathway has been studied. AChE has been the target of infusions inhibitory activity as its inhibition has been seen to improve cognition and global functioning1 in AD suffering people and to improve the gastrointestinal motility2. Given to lab animals the compounds presente in the infusions were able to reach the brain and inhibit the enzyme3. The effect of infusions on cholesterol bioavailability pointed out that some infusions were able to reduce cholesterol permeation4 and also to have some inhibitory activity5. Studies have indicated that phenolics are able to modify the cell proteome6. The infusions have also been shown to modify the amount of cholesterol transporter proteins in cell membrane and this maybe one of possible explanations for the reduction in cholesterol transport detected under the effect of infusions, on some people ando n simulated intestinal barrier.
  • Cholesterol transporter proteins in HepG2 cells can be modulated by phenolic compounds present in Opuntia ficus-indica aqueous solutions
    Publication . RESSAISSI, Asma; ATTIA, Nebil; Pacheco, Rita; Fale, Pedro; Serralheiro, Maria Luisa
    Increased blood cholesterol is a risk factor for atherosclerotic cardiovascular disease. This study tested the hypothesis that phenolic compounds can modulate the level of cholesterol transporters including Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette transporters in liver cells. HepG2 cells, used as a model of hepatocytes, showed a decrease in the abundance of cholesterol transporters comparatively to the control when treated with the Opuntia ficus-indica's cladodes decoction. The decrease was between 13-70%, 25-60%, 9-60% and 23-60% for NPC1L1, ABCA1, ABCG5 and ABCG8 transporters, respectively, when using between 0.15 and 0.35 mg/mL of decoction in the culture medium. FTIR analysis showed changes in the amount of RNA, which may be the cause of the decrease in the level of several proteins. These in vitro results pave the way to a molecular explanation for the decoction of cladodes effect on cholesterol levels as it reduced the membrane cholesterol transporter proteins, NPC1L1, ABCG5/ABCG8 and ABCA1, in HepG2 cells.