Repository logo
 
Loading...
Profile Picture
Person

Lavareda, Guilherme

Search Results

Now showing 1 - 2 of 2
  • Conducting indium oxide films on plastic substrates by plasma enhanced reactive thermal evaporation
    Publication . Vygranenko, Yuri; Fernandes, Miguel; Vieira, Manuela; Lavareda, Guilherme; CARVALHO, CARLOS; Brogueira, P.; Amaral, Ana
    This work reports on low temperature deposition of conducing indium oxide films by a radio-frequency plasma enhanced reactive thermal evaporation (rf-PERTE) technique. The films were deposited on polyethylene terephthalate (PET) without intentional heating of the substrate and at elevated temperatures up to 150 degrees C. The material stoichiometry was accurately controlled by adjusting deposition conditions including the oxygen flow, process pressure, pumping speed, and RF-power. Besides, fine turning of the critical deposition parameters during the deposition was implemented by measuring the variation of film conductance in-situ. The film morphology was analyzed by scanning electron microscopy. Hall effect measurements were also performed to determine the relation between the deposition conditions and the electrical properties of the films. A resistivity of 4 x 10(-4) Omega-cm was reached under optimized deposition conditions. A 250 nm-thick coating with 16 Omega/sq sheet resistance shows an 82% peak value of transmittance in the visible spectral range.
  • InOx thin films deposited by plasma assisted evaporation: application in light shutters
    Publication . Merino, E. G.; Almeida, Pedro L.; Carvalho, Carlos Nunes de; Brogueira, P.; Amaral, A.; Lavareda, Guilherme
    An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.