Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Deep structure of the North Natal Valley (Mozambique) using combined wide-angle and reflection seismic dataPublication . Lepretre, A.; Schnurle, P.; Evain, Mikael; Verrier, F.; Moorcroft, D.; Clarens, P. de; Corela, C.; Afilhado, Alexandra; Loureiro, Afonso; LEROY, Sylvie; D'Acremont, Elia; Thompson, J.; Aslanian, D.; Moulin, MarylineThe North Natal Valley (NNV) and the Mozambique Coastal Plain (MCP) are key areas for the understanding of the SW Indian Ocean history since the Gondwana break-up. Nevertheless, the deep structures and the nature of the NNV and MCP remain discussed in the absence of deep geophysical data. In 2016, the NNV, MCP and Limpopo margin (LM) have been investigated along seven wide-angle and MCS profiles. The combined wide-angle and reflection seismic interpretation along the N-S MZ7 profile reveals an upper sedimentary sequence characterized by low velocities generally not exceeding 3 km/s, with thicknesses varying from 0.150 km in the central part to similar to 2.8 km in the south. The underlying sequence is formed of a 2.53.0 km thick volcano-sedimentary sequence which presents important lateral and with depth changes and presence of high velocity lenses, indicating inter-bedded volcanic sills and recurrent magmatic episodes. The south of the NNV including the Naude Ridge (NR) presents a disturbed sedimentary cover with structural highs and southward-dipping reflectors and sub-basins. The crust, reaching 35-40 km onshore below the MCP, gently thins below the continental shelf to a regular thickness of similar to 29 km below the NNV. Crustal velocities reveal low velocity gradients, with atypical high velocities. South the ND, the crust thins to 15 km. We interpret the velocity architecture combined with the evidences of volcanism at shallower depths as indicating an intensively intruded continental crust. Contrary to what is proposed in most geodynamic models, the Mozambique Coastal plain and the Natal Valley are both of continental nature, with an abrupt necking zone located south of NR. The Antarctica plate was therefore situated at the eastern limit of these two domains before the Gondwana breakup.
- Gondwana breakup: messages from the North Natal ValleyPublication . Moulin, Maryline; Aslanian, Daniel; Evain, Mikael; Lepretre, Angelique; Schnurle, Philippe; Verrier, Fanny; Thompson, Joseph; De Clarens, Philippe; LEROY, Sylvie; Dias, Nuno; Afilhado, Alexandra; Apprioul, R.; Bronner, A.; Castilla, R.; Corela, Carlos; Crozon, J.; Davy, C.; D'acremont, E.; Droz, Laurence; Duarte, J. L.; Fernagu, P.; Ferrant, A.; Fischer, M.; Franke, D.; Inguane, H.; Jorry, Stephan; Jouet, G.; Loureiro, Afonso; Le Bouteiller, P.; Le Bihan, C.; Mahanjane, S.; Moocroft, D.; Pelleau, P.; Picot, M.; Pierre, D.; Pitel, M.; Rabineau, M.; Rombe, C.; Roudaut, M.; Senkans, A.; Toucanne, SamuelThe Natal Valley, offshore Mozambique, is a key area for understanding the evolution of East Gondwana. Within the scope of the integrated multidisciplinary PAMELA project, we present new wide-angle seismic data and interpretations, which considerably alter Geoscience paradigms. These data reveal the presence of a 30-km-thick crust that we argue to be of continental nature. This falsifies all the most recent palaeo-reconstructions of the Gondwana. This 30-km-thick continental crust 1,000 m below sea level implies a complex history with probable intrusions of mantle-derived melts in the lower crust, connected to several occurrences of magmatism, which seems to evidence the crucial role of the lower continental crust in passive margin genesis.