Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Carbon dots from coffee grounds: synthesis, characterization, and detection of noxious nitroanilines
    Publication . Costa, Alexandra I.; Barata, Patrícia; Moraes, Bianca; Prata, José V.
    Coffee ground (CG) waste is generated in huge amounts all over the world, constituting a serious environmental issue owing to its low biodegradability. Therefore, processes that simultaneously aim for its valorization while reducing its environmental impact are in great demand. In the current approach, blue luminescent carbon dots (C-dots) were produced in good chemical yields from CGs following hydrothermal carbonization methods under an extended set of reaction parameters. The remarkable fluorescent properties of the synthesized C-dots (quantum yields up to 0.18) allied to their excellent water dispersibility and photostability prompted their use for the first time as sensing elements for detection of noxious nitroanilines (NAs) in aqueous media. Very high levels of NA detection were achieved (e.g., limit of detection of 68 ppb for p-nitroaniline), being the regioisomeric selectivity attributed to its higher hyperpolarizability and dipole moment. Through ground-state and time-resolved fluorescence assays, a static fluorescence quenching mechanism was established. H-1 NMR titration data also strongly suggested the formation of ground-state complexes between C-dots and NAs.
  • Luminescent carbon dots from wet olive pomace: structural insights, photophysical properties and cytotoxicity
    Publication . Sousa, Diogo A.; Ferreira, L.F. Vieira; Fedorov, Alexander A.; Rego, Ana; Ferraria, Ana Maria; Cruz, Adriana; Berberan-Santos, Mario; Prata, José V.
    Carbon nanomaterials endowed with significant luminescence have been synthesized for the first time from an abundant, highly localized waste, the wet pomace (WP), a semi-solid by-product of industrial olive oil production. Synthetic efforts were undertaken to outshine the photoluminescence (PL) of carbon nanoparticles through a systematic search of the best reaction conditions to convert the waste biomass, mainly consisting in holocellulose, lignin and proteins, into carbon dots (CDs) by hydrothermal carbonization processes. Blue-emitting CDs with high fluorescence quantum yields were obtained. Using a comprehensive set of spectroscopic tools (FTIR, Raman, XPS, and 1H/13C NMR) in combination with steady-state and time-resolved fluorescence spectroscopy, a rational depiction of WP-CDs structures and their PL properties was reached. WP-CDs show the up-conversion of PL capabilities and negligible cytotoxicity against two mammalian cell lines (L929 and HeLa). Both properties are excellent indicators for their prospective application in biological imaging, biosensing, and dynamic therapies driven by light.