Loading...
6 results
Search Results
Now showing 1 - 6 of 6
- Non-selective optical wavelength-division multiplexing devices based on a-SiC:H multilayer heterostucturesPublication . Vieira, Manuela; Fernandes, Miguel; Louro, Paula; Vieira, Manuel; Barata, Manuel; Fantoni, AlessandroIn this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
- New stacked photodevices for signal multiplexing and demultiplexing applications in the visible spectrumPublication . Vieira, Manuela; Louro, Paula; Fantoni, Alessandro; Fernandes, Miguel; Vieira, Manuel Augusto; Barata, ManuelResults on the use of a double a-SiC:H p-i-n heterostructure for signal multiplexing and demultiplexing applications in the visible range are presented. Pulsed monochromatic beams together (multiplexing mode), or a single polychromatic beam (demultiplexing mode) impinge on the device and are absorbed, accordingly to their wavelength. Red, green and blue pulsed input channels are transmitted together, each one with a specific transmission rate. The combined optical signal is analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that in the multiplexing mode the output signal is balanced by the wavelength and transmission rate of each input channel, keeping the memory of the incoming optical carriers. In the demultiplexing mode the photocurrent is controlled by the applied voltage allowing regaining the transmitted information. A physical model supported by a numerical simulation gives insight into the device operation.
- Optical processing devices based on a-SiCH multilayer architecturesPublication . Vieira, Manuela; Louro, Paula; Vieira, Manuel; Fernandes, Miguel; Costa, João; Fantoni, Alessandro; Barata, ManuelRed, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- Optical demultiplexer based on an a-SiC:H voltage controlled devicePublication . Louro, Paula; Vieira, Manuela; Fernandes, Miguel; Costa, João; Vieira, Manuel; Caeiro, J.; Neves, N.; Barata, ManuelIn this paper we present results on the use of a semiconductor heterostructure based on a-SiC:H as a wavelength-division demultiplexer for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field however other applications are foreseen. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- a-SiCH based devices as optical demultiplexersPublication . Louro, Paula; Vieira, Manuela; Costa, João; Vieira, Manuel; Fernandes, Miguel; Fantoni, Alessandro; Barata, ManuelIn this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device (WDM) for the visible light spectrum. The WDM device is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO heterostructure in which the generated photocurrent at different values of the applied bias can be assigned to the different optical signals. The device was characterized through spectral response measurements, under different electrical bias. Demonstration of the device functionality for WDM applications was done with three different input channels covering wavelengths within the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. The influence of the optical power density was also analysed. An electrical model, supported by a numerical simulation explains the device operation. Short range optical communications constitute the major application field, however other applications are also foreseen.
- Multilayer Architectures Based on a-SiC:H Material: Tunable Wavelength Filters in Optical Processing DevicesPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Costa, João; Fernandes, Miguel; Fantoni, Alessandro; Barata, ManuelThe characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.