Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A novel microgrid support management system based on stochastic mixed-integer linear programmingPublication . Gomes, Isaías; Melício, R.; Mendes, VictorThis paper focuses on a support management system for the management and operation planning of a microgrid by the new electricity market agent, the microgrid aggregator. The aggregator performs the management of microturbines, wind and photovoltaic systems, energy storage, electric vehicles, and usage of energy aiming at having the best participation in the market. Nowadays, the electricity market participation entails making decisions aided by a support and information system, which is an important part of a microgrid support management system. The microgrid support management system developed in this paper has a formulation based on a stochastic mixed-integer linear programming problem that depends on knowledge of the stochastic processes that describe the uncertain parameters. A set of plausible scenarios computed by Kernel Density Estimation sets the characterization of the random variables. But as commonly happen, a scenario reduction is necessary to avoid the need to have significant computational requirements due to the high degree of uncertainty. The scenario reduction carried out is a two-tier procedure, following a K-means clustering technique and a fast backward scenario reduction method. The case studies reveal the performance of the microgrid and validate the methodology basis conceived for the microgrid support management system.
- Assessing the value of demand response in microgridsPublication . Gomes, Isaías; Melício, Rui; Mendes, VictorThis paper presents a computer application to assist in decisions about sustainability enhancement due to the effect of shifting demand from less favorable periods to periods that are more convenient for the operation of a microgrid. Specifically, assessing how the decisions affect the eco nomic participation of the aggregating agent of the microgrid bidding in an electricity day-ahead market. The aggregating agent must manage microturbines, wind systems, photovoltaic systems, energy storage systems, and loads, facing load uncertainty and further uncertainties due to the use of renewable sources of energy and participation in the day-ahead market. These uncertainties can not be removed from the decision making, and, therefore, require proper formulation, and the proposed approach customizes a stochastic programming problem for this operation. Case studies show that under these uncertainties and the shifting of demand to convenient periods, there are opportunities to make decisions that lead to significant enhancements of the expected profit. These enhancements are due to better bidding in the day-ahead market and shifting energy consumption in periods of favorable market prices for exporting energy. Through the case studies it is concluded that the proposed approach is useful for the operation of a microgrid.