Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- LoBEMS-IoT for building and energy management systemsPublication . Mataloto, Bruno; Ferreira, Joao; Cruz, NunoThis work presents the efforts on optimizing energy consumption by deploying an energy management system using the current IoT component/system/platform integration trends through a layered architecture. LoBEMS (LoRa Building and Energy Management System), the proposed platform, was built with the mindset of proving a common platform that would integrate multiple vendor locked-in systems together with custom sensor devices, providing critical data in order to improve overall building efficiency. The actions that led to the energy savings were implemented with a ruleset that would control the already installed air conditioning and lighting control systems. This approach was validated in a kindergarten school during a three-year period, resulting in a publicly available dataset that is useful for future and related research. The sensors that feed environmental data to the custom energy management system are composed by a set of battery operated sensors tied to a System on Chip with a LoRa communication interface. These sensors acquire environmental data such as temperature, humidity, luminosity, air quality but also motion. An already existing energy monitoring solution was also integrated. This flexible approach can easily be deployed to any building facility, including buildings with existing solutions, without requiring any remote automation facilities. The platform includes data visualization templates that create an overall dashboard, allowing management to identify actions that lead to savings using a set of pre-defined actions or even a manual mode if desired. The integration of the multiple systems (air-conditioning, lighting and energy monitoring) is a key differentiator of the proposed solution, especially when the top energy consumers for modern buildings are cooling and heating systems. As an outcome, the evaluation of the proposed platform resulted in a 20% energy saving based on these combined energy saving actions.
- LoRaWAN and urban waste management - A trialPublication . Cruz, Nuno; Cota, Nuno; Tremoceiro, JoãoThe city of Lisbon, as any other capital of a European country, has a large number of issues regarding managing waste and recycling containers spread throughout the city. This document presents the results of a study promoted by the Lisbon City Council for trialing LPWAN (Low-Power Wide-Area Network) technology for the waste management vertical under the Lisbon Smart City initiative. Current waste management is done using GSM (Global System for Mobile communications) sensors, and the municipality aims to use LPWAN in order to improve range and reduce costs and provisioning times when changing the communications provider. After an initial study, LoRa (Long Range) and LoRAWAN (LoRa Wide Area Network) as its network counterpart, were selected as the LPWAN technology for trials considering several use cases, exploring multiple distances, types of recycling waste containers, placements (underground or surface) and kinds of commercially available waste level measurement LoRa sensors. The results showed that the underground waste containers proved to be, as expected, the most difficult to operate correctly, where the container itself imposed attenuation levels of 26 dB on the LoRa link budget. The successful results were used to promote the deployment of a city-wide LoRa network, available to all the departments inside the Lisbon City Council. Considering the network capacity, the municipality also decided to make the network freely available to citizens.