Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Development of the first portuguese radar tracking sensor for space debrisPublication . Pandeirada, João; Bergano, Miguel; Neves, João; Marques, Paulo; Barbosa, Domingos; Coelho, Bruno; Ribeiro, ValerioCurrently, space debris represents a threat for satellites and space-based operations, both in-orbit and during the launching process. The yearly increase in space debris represents a serious concern to major space agencies leading to the development of dedicated space programs to deal with this issue. Ground-based radars can detect Earth orbiting debris down to a few square centimeters and therefore constitute a major building block of a space debris monitoring system. New radar sensors are required in Europe to enhance capabilities and availability of its small radar network capable of tracking and surveying space objects and to respond to the debris increase expected from the New Space economy activities. This article presents ATLAS, a new tracking radar system for debris detection located in Portugal. It starts by an extensive technical description of all the system components followed by a study that estimates its future performance. A section dedicated to waveform design is also presented, since the system allows the usage of several types of pulse modulation schemes such as LFM and phase coded modulations while enabling the development and testing of more advanced ones. By presenting an architecture that is highly modular with fully digital signal processing, ATLAS establishes a platform for fast and easy development, research, and innovation. The system follows the use of Commercial-Off-The-Shelf technologies and Open Systems which is unique among current radar systems.
- Developing a data fusion concept for radar and optical ground based SST stationPublication . Coelho, Bruno; Barbosa, Domingos; Berganoa, Miguel; Pandeirada, João; Marques, Paulo; Correia, Alexandre C. M.; Freitas, José Matias deAs part of the Portuguese Space Surveillance and Tracking (SST) program, a tracking radar and a double Wide Field of View Telescope system (4.3° x 2.3°) are being installed at the Pampilhosa da Serra Space Observatory (PASO) in the centre of continental Portugal, complementing an already installed deployable optical sensor for MEO and GEO surveillance. The tracking radar will track space debris in Low Earth Orbit (LEO) up to 1000 km and at the same time the telescope will also have LEO tracking capabilities. This article intends to discuss possible ways to take advantage of having these two sensors at the same location. Using both types of sensors takes advantage of the radar measurements which give precise radial velocity and distance to the objects, while the telescope gives better sky coordinates measurements. With the installation of radar and optical sensors, PASO can extend observation time of space debris and correlate information from optical and radar provenances in real time. During twilight periods both sensors can be used simultaneously to rapidly compute new TLEs for LEO objects, eliminating the time delays involved in data exchange between sites in a large SST network. This concept will not replace the need for a SST network with sensors in multiple locations around the globe, but will provide a more complete set of measurements from a given object passage, and therefore increase the added value for initial orbit determination, or monitoring of reentry campaigns of a given location. PASO will contribute to the development of new solutions to better characterize the objects improving the overall SST capabilities and constitute a perfect site for the development and testing of new radar and optical data fusion algorithms and techniques for space debris monitoring.