Browsing by Author "Soares, C. A. Mota"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Benchmark exact solutions for the static analysis of multi-layered piezoelectric composite using PVDFPublication . Moleiro, Filipa Andreia de Matos; Soares, C. M. Mota; Soares, C. A. Mota; Reddy, J. N.The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
- Damping optimization of viscoelastic laminated sandwich structures using the direct multisearch methodPublication . J.F.A. Madeira; Araújo, A. L.; Soares, C. M. Mota; Soares, C. A. MotaA multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. A layerwise finite element model for sandwich plates with viscoelastic core and anisotropic laminated face layers is used along with the complex modulus approach and the dynamic problem is solved in the frequency domain. Constrained optimization is conducted for maximisation of modal loss factors and minimisation of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms. DMS is a solver for multiobjective optimization problems which does not use any derivatives of the objective functions. It is based on a novel technique called direct multisearch, developed by extending direct search from single to multiobjective optimisation.
- Multiobjective optimization for vibration reduction in composite plate structures using constrained layer dampingPublication . Madeira, JFA; Araújo, Aurélio L.; Soares, C. M. Mota; Soares, C. A. MotaThis paper presents a multiobjective optimization approach to minimize weight and maximize modal damping in laminated composite panels with Constrained Layer Damping (CLD) treatments. The design variables are the number and position of the CLD patch treatments on the surface of the laminated plate. The Direct MultiSearch (DMS) solver for multiobjective optimization problems is used in this work. DMS is a solver which does not use any derivatives of the objective functions. A previously developed finite element model for sandwich plates with viscoelastic core and anisotropic laminated face layers is adapted to model the plate with the CLD treatments. Applications for L-shaped and T-shaped plates are presented and both trade-off Pareto optimal fronts and the respective treatment configurations are obtained and the results are analyzed and discussed.
- Multiobjective optimization for vibration reduction in composite plate structures using constrained layer dampingPublication . Madeira, JFA; Araújo, A. L.; Mota Soares, Cristóvão Manuel; Soares, C. A. MotaThis paper presents a multiobjective optimization approach to minimize weight and maximize modal damping in laminated composite panels with Constrained Layer Damping (CLD) treatments. The design variables are the number and position of the CLD patch treatments on the surface of the laminated plate. The Direct MultiSearch (DMS) solver for multiobjective optimization problems is used in this work. DMS is a solver which does not use any derivatives of the objective functions. A previously developed finite element model for sandwich plates with viscoelastic core and anisotropic laminated face layers is adapted to model the plate with the CLD treatments. Applications for L-shaped and T-shaped plates are presented and both trade-off Pareto optimal fronts and the respective treatment configurations are obtained and the results are analyzed and discussed.