Percorrer por autor "Sliwa, Ewelina I."
A mostrar 1 - 1 de 1
Resultados por página
Opções de ordenação
- A 3D MOF with Cu20/Cu6 clusters: self-assembly, CO2 encapsulation, structural features, and magnetic propertiesPublication . Sliwa, Ewelina I.; Nesterov, Dmytro S.; Klak, Julia; Kirillov, Alexander M.; Smolenski, PiotrAbstract Molecular design of multicopper clusters has been of increasing importance in inorganic chemistry, biomedical science, and functional materials. Herein, two new copper compounds were self-assembled from copper(II) monofluoroacetate or trifluoroacetate, elemental copper, and 1,3,5-triaza-7-phosphaadamantane (PTA). The reaction starting from copper(II) monofluoroacetate yielded a tetranuclear cluster, [Cu4II(μ3-OH)2(μ-L)6(PTA=O)2] (1), where L is monofluoroacetate(1−) and PTA=O is the oxide of PTA. Formation of 1 involves the oxidation of PTA and the incorporation of μ3-OH– ligands. In contrast, a similar reaction with copper(II) trifluoroacetate produced a unique three-dimensional metal–organic framework (3D MOF), formulated as [{Cu20II(CO3)(μ3-O)2(μ3-OH)22(μ-L′)12}{Cu6I(μ3-PTA)6(CH3CN)12}]n·6n(L′)·3n(H2O)·2n(CH3CN) (2), where L′ is trifluoroacetate. It comprises Cu20 clusters, with an encapsulated carbonate anion fixed from atmospheric CO2, which are bridged by {Cu6I(PTA)6} units into a 3D MOF. Control experiments confirmed that carbonate originates from ambient CO2 rather than from added carbonate salts. Both 1 and 2 were fully characterized, and their magnetic properties were investigated, revealing dominant antiferromagnetic interactions within the Cu4 and Cu20 clusters, respectively. Density functional theory (DFT) calculations confirmed the antiferromagnetic ground spin state of 1 and disclosed the stability of the Cu20 core in 2. This work highlights the influence of fluorinated carboxylates and atmospheric conditions on the assembly and architecture of multicopper clusters, and extends their family to new examples.
