Browsing by Author "Silva, M. F. da"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Interdiffusion at Sb/Ge interfaces induced in thin multilayer films by nanosecond laser irradiationPublication . Serna, R.; Afonso, C. N.; Catalina, F.; Teixeira, Nuno; Silva, M. F. da; Soares, J. C.Thin films consisting of 3 or 4 Sb and Ge alternating layers are irradiated with single nanosecond laser pulses (12 ns, 193 nm). Real time reflectivity (RTR) measurements are performed during irradiation, and Rutherford backscattering spectrometry (RBS) is used to obtain the concentration depth profiles before and after irradiation. Interdiffusion of the elements takes place at the layer interfaces within the liquid phase. The reflectivity transients allow to determine the laser energy thresholds both to induce and to saturate the process being both thresholds dependent on the multilayer configuration. It is found that the energy threshold to initiate the process is lower when Sb is at the surface while the saturation is reached at lower energy densities in those configurations with thinner layers.
- Structural characterization of Co‐Re superlatticesPublication . Melo, L. V.; Trindade, I.; From, M.; Freitas, P. P.; Teixeira, Nuno; Silva, M. F. da; Soares, J. C.Co‐Re superlattices were prepared with nominal periodicities of 65–67 Å and varying bilayer composition. The structural characterization was made by x‐ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x‐ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.
- The effect of the angle of incidence on the aqueous corrosion of ion implanted M50 steel substratesPublication . Rangel, C. N.; Simplício, M. H.; Consiglieri, A. C.; Nielsen, B. R.; Torp, B.; Teixeira, Nuno; Alves, J. G.; Silva, M. F. da; Soares, J. C.; Dodd, A.; Kinder, J.Following work on tantalum and chromium implanted flat M50 steel substrates, this work reports on the electrochemical behaviour of M50 steel implanted with tantalum and chromium and the effect of the angle of incidence. Proposed optimum doses for resistance to chloride attack were based on the interpretation of results obtained during long-term and accelerated electrochemical testing. After dose optimization from the corrosion viewpoint, substrates were implanted at different angles of incidence (15°, 30°, 45°, 60°, 75°, 90°) and their susceptibility to localized corrosion assessed using open-circuit measurements, step by step polarization and cyclic voltammetry at several scan rates (5–50 mV s-1). Results showed, for tantalum implanted samples, an ennoblement of the pitting potential of approximately 0.5 V for an angle of incidence of 90°. A retained dose of 5 × 1016 atoms cm-2 was found by depth profiling with Rutherford backscattering spectrometry. The retained dose decreases rapidly with angle of incidence. The breakdown potential varies roughly linearly with the angle of incidence up to 30° falling fast to reach -0.1 V (vs. a saturated calomel electrode (SCE)) for 15°. Chromium was found to behave differently. Maximum corrosion resistance was found for angles of 45°–60° according to current densities and breakdown potentials. Cr+ depth profiles ((p,γ) resonance broadening method), showed that retained doses up to an angle of 60° did not change much from the implanted dose at 90°, 2 × 1017 Cr atoms cm-2. The retained implantation dose for tantalum and chromium was found to follow a (cos θ)8/3 dependence where θ is the angle between the sample normal and the beam direction.