Browsing by Author "Rodrigues, H. C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- GA topology optimization using random keys for tree encoding of structuresPublication . Madeira, JFA; Pina, H. L.; Rodrigues, H. C.Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
- Multiobjective topology optimization of structures using genetic algorithms with chromosome repairingPublication . Madeira, JFA; Rodrigues, H. C.; Pina, H.In this work, a genetic algorithm (GA) for multiobjective topology optimization of linear elastic structures is developed. Its purpose is to evolve an evenly distributed group of solutions to determine the optimum Pareto set for a given problem. The GA determines a set of solutions to be sorted by its domination properties and a filter is defined to retain the Pareto solutions. As an equality constraint on volume has to be enforced, all chromosomes used in the genetic GA must generate individuals with the same volume value; in the coding adopted, this means that they must preserve the same number of “ones” and, implicitly, the same number of “zeros” along the evolutionary process. It is thus necessary: (1) to define chromosomes satisfying this propriety and (2) to create corresponding crossover and mutation operators which preserve volume. Optimal solutions of each of the single-objective problems are introduced in the initial population to reduce computational effort and a repairing mechanism is developed to increase the number of admissible structures in the populations. Also, as the work of the external loads can be calculated independently for each individual, parallel processing was used in its evaluation. Numerical applications involving two and three objective functions in 2D and two objective functions in3Dare employed as tests for the computational model developed. Moreover, results obtained with and without chromosome repairing are compared.