Browsing by Author "Ramirez, Mario"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methodsPublication . Nascimento, Marta; Sousa, Adriano; Ramirez, Mario; Francisco, Alexandre; Carrico, Joao; Vaz, CátiaHigh Throughput Sequencing provides a cost effective means of generating high resolution data for hundreds or even thousands of strains, and is rapidly superseding methodologies based on a few genomic loci. The wealth of genomic data deposited on public databases such as Sequence Read Archive/European Nucleotide Archive provides a powerful resource for evolutionary analysis and epidemiological surveillance. However, many of the analysis tools currently available do not scale well to these large datasets, nor provide the means to fully integrate ancillary data. Here we present PHYLOViZ 2.0, an extension of PHYLOViZ tool, a platform independent Java tool that allows phylogenetic inference and data visualization for large datasets of sequence based typing methods, including Single Nucleotide Polymorphism ( SNP) and whole genome/core genome Multilocus Sequence Typing (wg/cgMLST) analysis. PHYLOViZ 2.0 incorporates new data analysis algorithms and new visualization modules, as well as the capability of saving projects for subsequent work or for dissemination of results.
- PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methodsPublication . Francisco, Alexandre P.; Vaz, Cátia; Monteiro, Pedro T.; Melo-Cristino, José; Ramirez, Mario; Carrico, JoaoBackground: With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results: PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions: PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.