Browsing by Author "Pereira, Manuel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Calcium diglyceroxide as a catalyst for biodiesel productionPublication . Catarino, Mónica Inês; Martins, Susana; Ana Paula Soares Dias; Pereira, Manuel; Gomes, JoãoCalcium diglyceroxide (CaD) was used as the catalyst for biodiesel production through oil methanolysis. It was evaluated its catalytic behavior, its air expo- sure tolerance, and the Ca leaching. CaD catalyst was synthesized from food waste scallop shell derived CaO (obtained by calcination at 900 degrees C) by contacting with a mixture of equal volumes of glycerin and methanol at 65 degrees C for 2 h. The CaO obtained by calcination of scallop shell was used as reference catalyst. In standard reaction conditions (2.5 h, methanol reflux temperature, 5 wt% (oil basis) catalyst loading, and methanol: oil = 12:1 moral ratio), CaD presented lower catalytic activity than CaO (FAME yield of 92% against 99%, respectively). 24 h repined CaD presented improved catalytic behavior probably due to the formation of surface Ca - OH groups, achieving 96% of FAME yield. Thermogravimetry (TG) data showed that inorganic residue was larger for biodiesel than for glycerin, being CaD catalyst more soluble than CaO. Data showed that CaD is unstable under reaction conditions, suffering leaching, but the absence of Matter Organic Non-Glycerol (MONG) in the glycerin phase allows to neglect the homogeneous contribution of the leached catalyst. CaD formation during reaction contributes to FAME contamination with Ca and promotes catalyst deactivation thus being an undesired occurrence.
- Study of additive manufacturing intrinsic defects on fatigue life of Ti-6Al-4V †Publication . Ribeiro Cardoso Martins Morgado, Teresa Leonor; Alves, João; Pereira, António; Pereira, Manuel; Martins, Rui F.The present work presents a new approach to studying the structural integrity of a Ti-6Al-4V alloy obtained by Selective Laser Melting (SLM). This approach is based on the intrinsic addictive manufacturing defects analysis obtained by nanotomography, the experimental S-N curve, and the small crack growth Murakami and Endo model. Also, two counting methods of 3D manufacturing intrinsic defects were considered. The simulation of S-N curves and the small crack propagation curves were successfully obtained. New models for predicted fatigue limit were developed, one using the (3D) variable area of the defects observed as the total area and the other using the total project area. The 3D total surface area counting method presents more conservative values on crack propagation studies, so it is recommended for integrity studies of Ti6Al4V alloy obtained by SLM.