Browsing by Author "Passos, Pedro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Approximate entropy normalized measures for analyzing social neurobiological systemsPublication . Fonseca, Sofia; Milho, João; Passos, Pedro; Araújo, Duarte; Davids, KeithWhen considering time series data of variables describing agent interactions in social neurobiological systems, measures of regularity can provide a global understanding of such system behaviors. Approximate entropy (ApEn) was introduced as a nonlinear measure to assess the complexity of a system behavior by quantifying the regularity of the generated time series. However, ApEn is not reliable when assessing and comparing the regularity of data series with short or inconsistent lengths, which often occur in studies of social neurobiological systems, particularly in dyadic human movement systems. Here, the authors present two normalized, nonmodified measures of regularity derived from the original ApEn, which are less dependent on time series length. The validity of the suggested measures was tested in well-established series (random and sine) prior to their empirical application, describing the dyadic behavior of athletes in team games. The authors consider one of the ApEn normalized measures to generate the 95th percentile envelopes that can be used to test whether a particular social neurobiological system is highly complex (i.e., generates highly unpredictable time series). Results demonstrated that suggested measures may be considered as valid instruments for measuring and comparing complexity in systems that produce time series with inconsistent lengths.
- Illustrating changes in landscapes of passing opportunities along a set of competitive football matchesPublication . Gómez-Jordana, Luis; Amaro E Silva, Rodrigo; Milho, João; Ric, Angel; Passos, PedroThis study aims to illustrate the landscape of passing opportunities of a football team across a set of competitive matches. To do so positional data of 5 competitive matches was used to create polygons of pass availability. Passes were divided into three types depending on the hypothetical threat they may pose to the opposing defense (penetrative, support, and backwards passes). These categories were used to create three heatmaps per match. Moreover, the mean time of passing opportunities was calculated and compared across matches and for the three categories of passes. Due to the specificity of player’s interactive behavior, results showed heatmaps with a variety of patterns. Specifically the fifth match was very dissimilar to the other four. However, characterizing a football match in terms of passing opportunities with a single heatmap dismisses the variety of dynamics that occur throughout a match. Therefore, three temporal heatmaps over windows of 10 min were presented highlighting on-going dynamical changes in pass availability. Results also display that penetrative passes were available over shorter periods of time than backward passes that were available shorter than support passes. The results highlight the sensibility of the model to different task constrains that emerge within football matches.
