Browsing by Author "Nunes, Lina"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Consolidating preservative-treated wood: Combined mechanical performance of boron and polymeric products in wood degraded by Coniophora puteanaPublication . Henriques, Dulce Franco; Brito, Jorge Manuel Caliço Lopes de; Duarte, Sónia; Nunes, LinaWhen timber elements in heritage buildings are moderately degraded by fungi and assuming underlying moisture problems have been solved, two actions can be taken: i) use a biocide to stop fungal activity; ii) consolidate the degraded elements so that the timber keeps on fulfilling its structural and decorative functions. The aim of this work is to investigate the mechanical performance of maritime pine wood degraded by fungi after being treated with a biocide followed by impregnation with a polymer product. Three commercially available products were used: a boron water-based biocide, an acrylic consolidant and an epoxy-based consolidant. Treated and consolidated specimens were subjected to mechanical tests: axial compression test (NP 618), static surface hardness (ISO 3350) and bending test (NP 619). Sets of replicates were subjected to an evaporation ageing test (EN 73) after application of the products and also tested for mechanical behaviour. An increase in mechanical strength was observed for both consolidants with no significant influence from the previous use of biocide product. The specimens subjected to ageing showed a slightly better general mechanical performance.
- Development of a penetration test for timber impregnation products for use in old buildingsPublication . D.F., Henriques; Nunes, Lina; De Brito, JorgeThis paper studies the application of commercial biocides to old maritime pine timber structures (Pinus pinaster Ait.) that have previously been impregnated with other products. A method was developed in the laboratory to be used in situ to determine the impregnation depth achieved by a new generation biocide product applied to timber from an old building. This timber had once been treated with an unknown product difficult to characterize without extensive analysis. The test was initially developed in laboratory conditions and later tested on elements of the roof structure of an 18th century building. In both cases the results were promising and mutually consistent with penetration depths for some treatments reaching 2.0 cm. The application in situ proved the tests viability and simplicity of execution giving a clear indication on the feasibility of possible re-treatments.
- Mechanical evaluation of timber conservation processes by bending testsPublication . Henriques, Dulce Franco; Nunes, Lina; Brito, Jorge deThis paper presents the laboratory work performed with the purpose of understanding the mechanical performance of 340x20x20 mm maritime pine wood samples degraded by rot fungi when treated with a biocide product followed by consolidation through impregnation with a polymeric product. Four commercially available products were used: a water-based biocide, BC, a solvent-based biocide, X, an acrylic consolidant, PB (PB 72), and an epoxy-based consolidant, E. Seven sets of specimens each one having a varied range of fungal degradation were prepared. Then the product combinations were applied by brush to six sets of specimens (E, X-E, BC-E, PB, X-PB, BC-PB) of which one was left untreated for control, 0-0. Finally all sets were subjected to static bending strength test until rupture. Results showed that the acrylic and epoxy-based products lead to increased mechanical capacity of the consolidated wood up to 100% in some cases in specimens with 70% of MOE loss. The results presented the same order of magnitude for both wood consolidants. The previous application of biocide did not have a significant impact in the behavioral pattern of the consolidant: a marked improvement of the bending strength of the degraded specimens after treatment and consolidation. These results demonstrated the feasibility of combining biocide/consolidation products, and provide indications of interest to the application of this technique to extend the lifespan of wood elements moderately degraded by fungi in old buildings.