Browsing by Author "Morais, Iolanda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Earthquakes in western Iberia: improving the understanding of lithospheric deformation in a slowly deforming regionPublication . Custódio, Susana; Dias, Nuno; Carrilho, F.; Góngora, E.; Rio, I.; Marreiros, Célia; Morais, Iolanda; Alves, P.; Matias, LuísMainland Portugal, on the southwestern edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation (< 5 mm yr(-1)), which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). Some offshore earthquakes are nucleated on old and cold lithospheric mantle, at depths down to 60 km. The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. In this paper, we analyse the instrumental earthquake catalogue for western Iberia, which covers the period between 1961 and 2013. Between 2010 and 2012, the catalogue was enriched with data from dense broad-band deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high-quality data, earthquakes collapse into well-defined clusters and lineations. We identify and characterize the most outstanding clusters and lineations of epicentres and correlate them with geophysical and tectonic features (historical seismicity, topography, geologically mapped faults, Moho depth, free-air gravity, magnetic anomalies and geotectonic units). Both onshore and offshore, clusters and lineations of earthquakes are aligned preferentially NNE-SSW and WNW-ESE. Cumulative seismic moment and epicentre density decrease from south to north, with increasing distance from the plate boundary. Only few earthquake lineations coincide with geologically mapped faults. Clusters and lineations that do not match geologically mapped faults may correspond to previously unmapped faults (e.g. blind faults), rheological boundaries or distributed fracturing inside blocks that are more brittle and therefore break more easily than neighbour blocks. The seismicity map of western Iberia presented in this article opens important questions concerning the regional seismotectonics. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, such as western Iberia, where high-magnitude earthquakes occur with long recurrence intervals.
- Stratification of the earth beneath the Azores from P and S receiver functionsPublication . Silveira, Graça; Vinnik, Lev; Stutzmann, E.; Farra, V.; Kiselev, Sergei; Morais, IolandaSeismic recordings of IRIS/IDA/GSN station CMLA and of several temporary stations in the Azores archipelago are processed with P and S receiver function (PRF and SRF) techniques. Contrary to regional seismic tomography these methods provide estimates of the absolute velocities and of the Vp/Vs ratio up to a depth of similar to 300 km. Joint inversion of PRFs and SRFs for a few data sets consistently reveals a division of the subsurface medium into four zones with a distinctly different Vp/Vs ratio: the crust similar to 20 km thick with a ratio of similar to 1.9 in the lower crust, the high-Vs mantle lid with a strongly reduced VpNs velocity ratio relative to the standard 1.8, the low-velocity zone (LVZ) with a velocity ratio of similar to 2.0, and the underlying upper-mantle layer with a standard velocity ratio. Our estimates of crustal thickness greatly exceed previous estimates (similar to 10 km). The base of the high-Vs lid (the Gutenberg discontinuity) is at a depth of-SO km. The LVZ with a reduction of S velocity of similar to 15% relative to the standard (IASP91) model is terminated at a depth of similar to 200 km. The average thickness of the mantle transition zone (TZ) is evaluated from the time difference between the S410p and SKS660p, seismic phases that are robustly detected in the S and SKS receiver functions. This thickness is practically similar to the standard IASP91 value of 250 km. and is characteristic of a large region of the North Atlantic outside the Azores plateau. Our data are indicative of a reduction of the S-wave velocity of several percent relative to the standard velocity in a depth interval from 460 to 500 km. This reduction is found in the nearest vicinities of the Azores, in the region sampled by the PRFs, but, as evidenced by SRFs, it is missing at a distance of a few hundred kilometers from the islands. We speculate that this anomaly may correspond to the source of a plume which generated the Azores hotspot. Previously, a low S velocity in this depth range was found with SRF techniques beneath a few other hotspots.