Percorrer por autor "Jesus, Nicole de"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Catalyzed pyrolysis of coffee and tea wastesPublication . Rijo, Bruna; Soares Dias, A. P.; Ramos, Marta; Jesus, Nicole de; Puna, JaimeThe pyrolysis of food waste has a double environmental advantage as it contributes to the management and treatment of waste and allows the production of renewable fuels. Spent coffee and tea grounds, were characterized by thermogravimetry to determine their composition and evaluating the pyrolysis kinetics of each lignocellulosic pseudocomponent and pyrolyzed in a fixed bed reactor. Tea grounds had about twice the cellulose and higher pyrolysis activation energy than the coffee grounds sample. At 673 K the pyrolysis of the coffee grounds led to a 42% bio-oil yield while the tea grounds produced only 18% of liquid product, which is compatible with its higher cellulose content and the higher activation energy for pyrolysis. The alkaline carbonates used as pyrolysis catalysts led to an increase in the production of a gaseous product, bio-gas, with a reduction in the production of bio-oil but accompanied by a significant increase in the volatile fraction of the produced bio-oils. Pyrolysis data shows that both coffee and tea residues can be used as raw materials to produce pyrolysis bio-oil and that low-value materials such as alkaline carbonates can be used as pyrolysis catalysts improving the characteristics of bio-oils produced such as acidity and volatility.
- Home trash biomass valorization by catalytic pyrolysisPublication . Rijo, Bruna; Dias, Ana Paula Soares; Jesus, Nicole de; Pereira, Manuel FranciscoWith the increase in population, large amounts of food waste are produced worldwide every day. These leftovers can be used as a source of lignocellulosic waste, oils, and polysaccharides for renewable fuels. In a fixed bed reactor, low-temperature catalytic pyrolysis was investigated using biomass gathered from domestic garbage. Thermogravimetry, under N2 flow, was used to assess the pyrolysis behavior of tea and coffee grounds, white potato, sweet potato, banana peels, walnut, almonds, and hazelnut shells. A mixture of biomass was also evaluated by thermogravimetry. Waste inorganic materials (marble, limestone, dolomite, bauxite, and spent Fluid Catalytic Cracking (FCC) catalyst) were used as catalysts (16.7% wt.) in the pyrolysis studies at 400 degrees C in a fixed bed reactor. Yields of bio-oil in the 22-36% wt. range were attained. All of the catalysts promoted gasification and a decrease in the bio-oil carboxylic acids content. The marble dust catalyst increased the bio-oil volatility. The results show that it is possible to valorize lignocellulosic household waste by pyrolysis using inorganic waste materials as catalysts.
