Browsing by Author "Gonzalez Felipe, R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Magnetized strangelets at finite temperaturePublication . Gonzalez Felipe, R.; Lopez Fune, E.; Manreza Paret, D.; Perez Martinez, A.The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the Fe-56 isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of O(100) MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.
- Spontaneous leptonic CP violation and nonzero theta(13)Publication . Branco, G. C.; Gonzalez Felipe, R.; Joaquim, F. R.; Serôdio, H.We consider a simple extension of the Standard Model by adding two Higgs triplets and a complex scalar singlet to its particle content. In this framework, the CP symmetry is spontaneously broken at high energies by the complex vacuum expectation value of the scalar singlet. Such a breaking leads to leptonic CP violation at low energies. The model also exhibits an A(4) X Z(4) flavor symmetry which, after being spontaneously broken at a high-energy scale, yields a tribimaximal pattern in the lepton sector. We consider small perturbations around the tribimaximal vacuum alignment condition in order to generate nonzero values of theta(13), as required by the latest neutrino oscillation data. It is shown that the value of theta(13) recently measured by the Daya Bay Reactor Neutrino Experiment can be accommodated in our framework together with large Dirac-type CP violation. We also address the viability of leptogenesis in our model through the out-of-equilibrium decays of the Higgs triplets. In particular, the CP asymmetries in the triplet decays into two leptons are computed and it is shown that the effective leptogenesis and low-energy CP-violating phases are directly linked.