Browsing by Author "Fonseca, Rita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cianobactérias e toxicidade: impacte na saúde pública em Portugal e no BrasilPublication . Bellém, Fernando; Nunes, Susana; Morais, Manuela; Fonseca, RitaUm aumento da concentração de nutrientes na água poderá desencadear fluorescências de cianobactérias (densidades >200 cel/mL). Sob determinadas condições as cianobactérias produzem toxinas responsáveis pelo envenenamento de animais e humanos. O objetivo deste estudo é relacionar a ocorrência de fluorescências toxicas em Portugal e no Brasil. Para tal, em 2005 e 2006 foi estudado o fitoplâncton em três reservatórios em Portugal (região sul) e dois no Brasil (Minas Gerais e Pará). Comparativamente foi verificado maior diversidade nos reservatórios portugueses, com dominância de cianobactérias em período de primavera/verão/outono, pertencentes a géneros produtores de hépato e neurotoxinas (Microcystis sp, Aphanizomenon sp, Oscillatoria sp e Planktothrix sp.). No Brasil observou-se dominância de cianobactérias ao longo de todo o ano, com presença de Microcystis aeruginosa, produtora de hepatotoxina. Conclui-se que os reservatórios estudados apresentam géneros produtores de toxinas, com risco para a saúde pública, sendo fundamental implementar medidas que contribuam para mitigar esta situação. - ABSTRACT - An increasing of nutrients in water can conduct to the development of cyanobacteria blooms (density>2000 cels/mL). Under specific conditions cyanobacteria produce toxins responsible for acute poisoning of animals and humans. The aim of this study is to describe toxic blooms in Portugal and Brazil. Therefore, phytoplankton from three Portuguese reservoirs (South region) and two from Brazil (Minas Gerais and Pará) were studied in 2005 and 2006. Portuguese reservoirs showed more diversity with dominance of hepatic and neurotoxin genera producers (Microcystis sp, Aphanizomenon sp, Oscillatoria sp e Planktothrix sp.) along spring/summer/autumn seasons. In Brazil dominance of cyanobacteria was observed all along the year with the presence of Microcystis aeruginosa hepatotoxic producer. The studied reservoirs present toxins producers’ genera, with risk for public health, being fundamental the implementation of mitigation measures to reverse this situation.
- Strategy to improve the mechanical properties of bioabsorbable materials based on chitosan for orthopedic fixation applicationsPublication . Figueiredo, Lígia; Fonseca, Rita; Pinto, Luís F. V.; Ferreira, Frederico Castelo; Almeida, Amélia; Rodrigues, AlexandraBioabsorbable polymeric fixation devices have been used as an alternative to metallic implants in orthopedics, preventing the stress shielding effect and avoiding a second surgery for implant removal. However, several problems are still associated with current bioabsorbable implants, including the limited mechanical stiffness and strength, and the adverse tissue reactions generated. To minimize or even eliminate the problems associated with these implants, strategies have been developed to synthesize new implant materials based on chitosan. To overcome the brittle behavior of most 3D chitosan-based structures, glycerol and sorbitol were blended to chitosan and the effect of these plasticizers in the produced specimens was analyzed by flexural tests, Berkovich tests, scanning electron microscopy (SEM) and micro-CT analyzes. The improvement of the mechanical properties was also tested by adding ceramics, namely hydroxyapatite powder and biphasic mixtures of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP). In the plasticizers group, the best combination of the measured properties was obtained for chitosan with 10% glycerol (flexural strength of 53.8 MPa and indentation hardness of 19.4 kgf/mm(2)), while in the ceramics group the best mechanical behavior was obtained for chitosan with 10% HA+beta-TCP powder (flexural strength of 67.5 MPa and indentation hardness 28.2 kgf/mm(2)). All the tested material compositions were dense and homogeneous, fundamental condition for a good implant performance. These are encouraging results, which support the continued development of chitosan-based materials for orthopedic fixation applications.