Browsing by Author "Coelho, Helder"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Agent inferencing meets the semantic webPublication . Trigo, Paulo; Coelho, HelderWe provide all agent; the capability to infer the relations (assertions) entailed by the rules that, describe the formal semantics of art RDFS knowledge-base. The proposed inferencing process formulates each semantic restriction as a rule implemented within a, SPARQL query statement. The process expands the original RDF graph into a fuller graph that. explicitly captures the rule's described semantics. The approach is currently being explored in order to support descriptions that follow the generic Semantic Web Rule Language. An experiment, using the Fire-Brigade domain, a small-scale knowledge-base, is adopted to illustrate the agent modeling method and the inferencing process.
- Decisions with multiple simultaneous goals and uncertain causal effectsPublication . Trigo, Paulo; Coelho, HelderA key aspect of decision-making in a disaster response scenario is the capability to evaluate multiple and simultaneously perceived goals. Current competing approaches to build decision-making agents are either mental-state based as BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristically among several goals and the MDP searches for a policy to achieve a specific goal. In this paper we develop a preferences model to decide among multiple simultaneous goals. We propose a pattern, which follows a decision-theoretic approach, to evaluate the expected causal effects of the observable and non-observable aspects that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) decisions and illustrate the proposal using the RoboCupRescue simulation environment.
- (Virtual) Agents for running electricity marketsPublication . Trigo, Paulo; Marques, Paulo; Coelho, HelderThis paper describes a multi-agent based simulation (MABS) framework to construct an artificial electric power market populated with learning agents. The artificial market, named TEMMAS (The Electricity Market Multi-Agent Simulator), explores the integration of two design constructs: (i) the specification of the environmental physical market properties and (ii) the specification of the decision-making (deliberative) and reactive agents. TEMMAS is materialized in an experimental setup involving distinct power generator companies that operate in the market and search for the trading strategies that best exploit their generating units' resources. The experimental results show a coherent market behavior that emerges from the overall simulated environment.