Browsing by Author "Carvalho, Carlos Nunes de"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- A CMOS micro power switched-capacitor DC-DC step-up converter for indoor light energy harvesting applicationsPublication . Carvalho, Carlos Manuel Ferreira; Lavareda, Guilherme; Amaral, Ana; Carvalho, Carlos Nunes de; Paulino, Nuno Filipe Silva VeríssimoThis paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
- Etchability dependence of InOx and ITO thin films by plasma enhanced reactive termal evaporation on structural properties and deposition conditionsPublication . Amaral, Ana; Lavareda, Guilherme; Carvalho, Carlos Nunes de; Andre, Vania; Vygranenko, Yuri; Fernandes, Miguel; Brogueira, PedroIndium oxide (InOx) and indium tin oxide (ITO) thin films were deposited on glass substrates by plasma enhanced reactive thermal evaporation (PERTE) at different substrate temperatures. The films were then submitted to two etching solutions with different chemical reactivity: i) HNO3 (6%), at room temperature; ii) HCl (35%): (40 °Be) FeCl3 (1:1), at 40 °C. The dependence of the etchability of the films on the structural and deposition conditions is discussed. Previously to etching, structural characterization was made. X-ray diffraction showed the appearance of a peak around 2θ=31° as the deposition temperature increases from room temperature to 190 °C, both for ITO and InOx. AFM surface topography and SEM micrographs of the deposited films are consistent with the structural properties suggested by X-ray spectra: as the deposition temperature increases, the surface changes from a finely grained structure to a material with a larger-sized grain or/and agglomerate structure of the order of 250-300 nm. The roughness Rq varies from 0.74 nm for the amorphous tissue to a maximum of 10.83 nm for the sample with the biggest crystalline grains. Raman spectra are also presented.
- InOx thin films deposited by plasma assisted evaporation: application in light shuttersPublication . Merino, E. G.; Almeida, Pedro L.; Carvalho, Carlos Nunes de; Brogueira, P.; Amaral, A.; Lavareda, GuilhermeAn integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.