Logo do repositório
 
Miniatura indisponível
Publicação

Vertex component analysis: a fast algorithm to extract endmembers spectra from hyperspectral data

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Vertex Component Analysis.rep.pdf319.55 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Linear spectral mixture analysis, or linear unmixing, has proven to be a useful tool in hyperspectral remote sensing applications. It aims at estimating the number of reference substances, also called endmembers, their spectral signature and abundance fractions, using only the observed data (mixed pixels). This paper presents new method that performs unsupervised endmember extraction from hyperspectral data. The algorithm exploits a simple geometric fact: endmembers are vertices of a simplex. The algorithm complexity, measured in floating points operations, is O(n), where n is the sample size. The effectiveness of the proposed scheme is illustrated using simulated data.

Descrição

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Palavras-chave

Linear spectral mixture analysis Linear unmixing Hyperspectral remote sensing applications

Contexto Educativo

Citação

NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Vertex Component Analysis: A Fast Algorithm to Extract Endmembers Spectra from Hyperspectral Data. Pattern Recognition and Image Analysis. ISBN 978-3-540-40217-6. Vol. 2652 (2003), p. 626-635.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer Berlin Heidelberg

Licença CC