Lourenço, PauloFantoni, AlessandroCosta, JoãoVieira, Manuela2019-11-252019-11-252019-12LOURENÇO, Paulo; [et al] – Lithographic mask defects analysis on an MMI 3 dB splitter. Photonics. ISSN 2304-6732. Vol. 6, N.º 4 (2019), pp. 1-82304-6732http://hdl.handle.net/10400.21/10734In this paper, we present a simulation study that intends to characterize the influence of defects introduced by manufacturing processes on the geometry of a semiconductor structure suitable to be used as a multimode interference (MMI) 3 dB power splitter. Consequently, these defects will represent refractive index fluctuations which, on their turn, will drastically affect the propagation conditions within the structure. Our simulations were conducted on a software platform that implements the Beam Propagation numerical method. This work supports the development of a biomedical plasmonic sensor, which is based on the coupling between propagating modes in a dielectric waveguide and the surface plasmon mode that is generated on an overlaid metallic thin film, and where the output readout is achieved through an a-Si:H photodiode. By using a multimode interference 1 × 2 power splitter, this sensor device can utilize the non-sensing arm as a reference one, greatly facilitating its calibration and enhancing its performance. As the spectral sensitivity of amorphous silicon is restricted to the visible range, this sensing device should be operating on a wavelength not higher than 700 nm; thus, a-SiNx has been the material hereby proposed for both waveguides and MMI power splitter.enga-SiNxBeam propagation methodMultimode interference3 dB splitterLithographic mask defects analysis on an MMI 3 dB splitterjournal articlehttps://doi.org/10.3390/photonics6040118